求由曲面x²=a²-az,x²+y²=(a/2)²,z=0(a>0)所
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 23:33:26
求由曲面x²=a²-az,x²+y²=(a/2)²,z=0(a>0)所围立体的体积
一道大一高数题,重积分的
一道大一高数题,重积分的
∵x²=a²-az,x²+y²=(a/2)²,z=0(a>0)
∴所围立体是一个下底以a/2为半径的圆,上底以曲面az=y²+3a²/4为顶的圆柱体
故所围立体的体积=4∫(0,a/2)dx∫(0,√(a²/4-x²))[y²/a+3a/4]dy (∫(0,a/2)表示从0到a/2积分,其他类同)
=4∫(0,π/2)dθ∫(0,a/2)(r²sin²θ/a+3a/4)rdr (进行极坐标变换)
=4∫(0,π/2)dθ∫(0,a/2)(r³sin²θ/a+3ar/4)dr
=∫(0,π/2)dθ*(r^4*sin²θ/a+3ar²/2)│(0,a/2)
=(a³/16)∫(0,π/2)(sin²θ+6)dθ
=(a³/32)∫(0,π/2)(13-cos(2θ))dθ
=(a³/32)(13θ-sin(2θ))│(0,π/2)
=(a³/32)(13π/2)
=13πa³/64.
∴所围立体是一个下底以a/2为半径的圆,上底以曲面az=y²+3a²/4为顶的圆柱体
故所围立体的体积=4∫(0,a/2)dx∫(0,√(a²/4-x²))[y²/a+3a/4]dy (∫(0,a/2)表示从0到a/2积分,其他类同)
=4∫(0,π/2)dθ∫(0,a/2)(r²sin²θ/a+3a/4)rdr (进行极坐标变换)
=4∫(0,π/2)dθ∫(0,a/2)(r³sin²θ/a+3ar/4)dr
=∫(0,π/2)dθ*(r^4*sin²θ/a+3ar²/2)│(0,a/2)
=(a³/16)∫(0,π/2)(sin²θ+6)dθ
=(a³/32)∫(0,π/2)(13-cos(2θ))dθ
=(a³/32)(13θ-sin(2θ))│(0,π/2)
=(a³/32)(13π/2)
=13πa³/64.
已知abcxyz都是非0实数,a²+b²+c²=x²+y²+z&sup
已知多项式A=x²+2y²-z²,B=-4x²+3y²+2z²
已知多项式A=x²+2y+z²,B=-4x²+3y²+2z²,且A+B
分解因式 x²(x²-y²)+z²(y²-x²) (a+b)
已知(x²+y²)(x²+y²-6)+9=0 ,求x²+y²
1.若a²+4b²-2a+4b+2=0,求a、b的值 2.已知x、y满足x²+y²
已知x²+y²+z²-2x+4y-6z+14=0,求代数式(x-y-z)²&or
求两圆X²+Y²+2aX+2aY+2a²-1=0与X²+Y²+2bX+
设集合A={x-y,x+y,xy}B={x²+y²,-x²-y²,0}若A=B求
y=√a²-x² 求导 是如何转化为a²-x²/2√a²-x²
a+b+c=0,求a²/(2a²+bc)+b²/(2b²+ac)+c²
由abcxyz是实数,求证(a²+b²+c²)(x²+y²+z&sup