作业帮 > 数学 > 作业

求由曲面x²=a²-az,x²+y²=(a/2)²,z=0(a>0)所

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 23:33:26
求由曲面x²=a²-az,x²+y²=(a/2)²,z=0(a>0)所围立体的体积
一道大一高数题,重积分的
求由曲面x²=a²-az,x²+y²=(a/2)²,z=0(a>0)所
∵x²=a²-az,x²+y²=(a/2)²,z=0(a>0)
∴所围立体是一个下底以a/2为半径的圆,上底以曲面az=y²+3a²/4为顶的圆柱体
故所围立体的体积=4∫(0,a/2)dx∫(0,√(a²/4-x²))[y²/a+3a/4]dy (∫(0,a/2)表示从0到a/2积分,其他类同)
=4∫(0,π/2)dθ∫(0,a/2)(r²sin²θ/a+3a/4)rdr (进行极坐标变换)
=4∫(0,π/2)dθ∫(0,a/2)(r³sin²θ/a+3ar/4)dr
=∫(0,π/2)dθ*(r^4*sin²θ/a+3ar²/2)│(0,a/2)
=(a³/16)∫(0,π/2)(sin²θ+6)dθ
=(a³/32)∫(0,π/2)(13-cos(2θ))dθ
=(a³/32)(13θ-sin(2θ))│(0,π/2)
=(a³/32)(13π/2)
=13πa³/64.