1/1×2+1/2×3+1/3×4…+1/n×(n-1)
若n为正整数,求1/n(n+1)+1/(n+1)(n+2)+1/(n+2)(n+3)+1/(n+3)(n+4)+.+1/
证明不等式:(1/n)^n+(2/n)^n+(3/n)^n+.+(n/n)^n
化简整式.六分之一× [ 3n×(n+1)+2n×(n+1)×(n-1)]
(1/(n^2 n 1 ) 2/(n^2 n 2) 3/(n^2 n 3) ……n/(n^2 n n)) 当N越于无穷大
化简:1/(n+1)(n+2)+1/(n+2)(n+3)+1/(n+3)(n+4)
(n+1)(n+2)/1 +(n+2)(n+3)/1 +(n+3)(n+4)/1
lim(√n^2+1+√n)/^4√n^3+n-n(n→∞)
n分之1+n分之2+n分之3+……n分之n-1=
[3n(n+1)+n(n+1)(2n+1)]/6+n(n+2)化简
用数学归纳法证明:1×2×3+2×3×4+…+n×(n+1)×(n+2)=n(n+1)(n+2)(n+3)4(n∈N
lim(1/n^2+4/n^2+7/n^2+…+3n-1/n^2)
化简(n+1)(n+2)(n+3)