已知数列{an}中前n项和为Sn,且Sn=-an-(1/2)^(n-1)+2(n∈N*),令Cn=(n+1)*an/n,
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/14 06:12:23
已知数列{an}中前n项和为Sn,且Sn=-an-(1/2)^(n-1)+2(n∈N*),令Cn=(n+1)*an/n,Tn=C1+C2+…+Cn.
比较Tn与5n/(2n+1)的大小并证明
比较Tn与5n/(2n+1)的大小并证明
令n=1,可得a1=1/2
Sn=-an-(1/2)^(n-1)+2 (1)
S(n+1)=-a(n+1)-(1/2)^n+2 (2)
(2)-(1)得a(n+1)=-a(n+1)+an+1/2^n
变形得 2^(n+1)a(n+1)-2^nan=1
故{2^nan}是首项为1公差为1等差数列
则可求得an=n/2^n
则Cn=(n+1)/2^n
再用错位相加法求出Tn=3-(n+3)/2^n
再判断Tn-5n/(2n+1)=(n+3)/(2n+1)-(n+3)/2^n的符号即可
只需比较2n+1和2^n的大小即可(用数学归纳法证明较好,自己试一下吧)
最终结果应该是当n=1和2 时,Tn=3时Tn>5n/(2n+1)
Sn=-an-(1/2)^(n-1)+2 (1)
S(n+1)=-a(n+1)-(1/2)^n+2 (2)
(2)-(1)得a(n+1)=-a(n+1)+an+1/2^n
变形得 2^(n+1)a(n+1)-2^nan=1
故{2^nan}是首项为1公差为1等差数列
则可求得an=n/2^n
则Cn=(n+1)/2^n
再用错位相加法求出Tn=3-(n+3)/2^n
再判断Tn-5n/(2n+1)=(n+3)/(2n+1)-(n+3)/2^n的符号即可
只需比较2n+1和2^n的大小即可(用数学归纳法证明较好,自己试一下吧)
最终结果应该是当n=1和2 时,Tn=3时Tn>5n/(2n+1)
已知数列{an}的前n项和Sn=-an-(1/2)^(n-1)+2(n为正整数).令bn=2^n*an,求证数列{bn}
已知数列an前n项和为Sn,且满足4(n+1)(Sn+1)=(n+2)^2an(n属于正整数) 求an
已知数列﹛an﹜的前n项和为sn,且2sn=2-(2n-1)an(n∈N*)
已知数列{an}中,a2=2,前n项和为Sn,且Sn=n(an+1)/2证明数列{an+1-an}是等差数列
已知数列{an}的前n项和为Sn,且对任意n属于N+有an+Sn=n,设Cn=n(1-bn)求数列{Cn}的前n项和Tn
已知数列{an}的首项a1=3,前n项和为Sn,且S(n+1)=3Sn+2n(n∈N)
已知数列{an}的首项是a1=1,前n项和为Sn,且Sn+1=2Sn+3n+1(n∈N*).
已知数列{an}的首项a1=5,前n项和为Sn,且Sn+1=2Sn+n+5(n∈N*).
已知数列{an}的首项a1=5,前n项和为Sn,且Sn+1=2Sn+n+5(n∈N*)
已知数列an的首项a1=5,前n项和为Sn,且S(n+1)=2Sn+n+5(n∈N*),求数列{an}的前n项和Sn,设
已知数列{an}中,an=n(2的n次方-1),其前n项和为Sn,则Sn+1/2n(n+1)等于?
a已知数列{an}的前n项和Sn=-an-(1/2)^n-1+2,n为整数,现令Cn=(n+1)|n*an,求Tn=