e
因为当x∈[1,2]时,f′(x)=ex-2x>0,所以f(x)在[1,2]上递增, 所以x∈[1,2]时,f(1)≤f(x)≤f(2),即e-1≤f(x)≤e2-4, 由a>0得g(x)=alnx+b在[1,2]上递增, 所以x∈[1,2]时,g(1)≤g(x)≤g(2),即b≤g(x)≤aln2+b, 又对任意x1∈[1,2],存在x2∈[1,2],使得f(x1)=g(x2), 所以有[e-1,e2-4]⊆[b,aln2+b],则
b≤e−1 aln2+b≥e2−4 故e2-4-aln2≤b≤e-1,得到,a≥ e2−e−3 ln2,b≤e-1 故答案为 D
已知函数f(x)=alnx+1/2x^2 (a>0)若对任意两个不等的正实数x1,x2 都有[f(x1)-f(x2)]/
函数f(x)和函数g(x),若对于任意x1 属于(0,2)存在x2 属于【1,2】,使f(x1).》=g(x2)应当怎样
设函数f(x)=2x/(x^2+1),g(x)=x^2-3x+a,若对于任意x1∈(0,1)总存在x2∈(0,1),使得
已知函数f(x)=x2-2x,g(x)=ax+2(a>0),若∀x1∈[-1,2],∃x2∈[-1,2],使得f(x1)
已知函数f(x)=lnx-14x+34x-1,g(x)=x2-2bx+4,若对任意x1∈(0,2),存在x2∈[1,2]
已知a>0,f(x)=x+alnx,若对区间(1/2,1)内的任意两个相异的实数x1,x2,恒有|f(x1)-f(x2)
已知函数f(x)=x|x-a|,若对任意的x1,x2∈[2,+∞),且x1≠x2,(x1-x2)[f(x1)-f(x2)
定义函数y=f(x),x∈D,若存在常数C,对任意的x1∈D,存在唯一的x2∈D,使得f(x1)+f(x2)2=C,则称
已知函数f(x)=x2-2ax+5(a>1).若对任意的x1,x2∈[1,a+1],总有|f(x1)-f(x2)|≤4,
已知函数f(x)=x^2,g(x)=(1/2)^2-m若对所有的x1【-1,2】存在x2【0,2】使得f(x)大于等于g
已知f(x)=x^2,g(x)=(1/2)^x-m,若对于任意x1∈[0,2],存在x2∈[1,2],使得f(x1)≥f
已知f(x)=x^2,g(x)=(1/2)^x-m,若对于任意x1∈[0,2],存在x2∈[1,2],使得f(x1)≥g
|