在正方形ABCD的边AB上任取一点E,作EF垂直AB交BD于点F,取FEGD中点G,连接EG,CG
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/18 17:59:17
在正方形ABCD的边AB上任取一点E,作EF垂直AB交BD于点F,取FEGD中点G,连接EG,CG
(1) EG=CG,EG⊥CG.
(2)EG=CG,EG⊥CG.
证明:延长FE交DC延长线于M,连MG.
∵∠AEM=90°,∠EBC=90°,∠BCM=90°,
∴四边形BEMC是矩形.
∴BE=CM,∠EMC=90°,
又∵BE=EF,∴EF=CM.
∵∠EMC=90°,FG=DG
∴MG=FD=FG.
∵BC=EM,BC=CD,
∴EM=CD.
∵EF=CM,
∴FM=DM,
∴∠F=45°.又FG=DG,∠CMG=∠EMC=45°,
∴∠F=∠GMC.
∴△GFE≌△GMC∴EG=CG,∠FGE=∠MGC.
∵∠FMC=90°,MF=MD,FG=DG,
∴MG⊥FD,
∴∠FGE+∠EGM=90°,
∴∠MGC+∠EGM=90°,
即∠EGC=90°,
∴EG⊥CG.
(2)EG=CG,EG⊥CG.
证明:延长FE交DC延长线于M,连MG.
∵∠AEM=90°,∠EBC=90°,∠BCM=90°,
∴四边形BEMC是矩形.
∴BE=CM,∠EMC=90°,
又∵BE=EF,∴EF=CM.
∵∠EMC=90°,FG=DG
∴MG=FD=FG.
∵BC=EM,BC=CD,
∴EM=CD.
∵EF=CM,
∴FM=DM,
∴∠F=45°.又FG=DG,∠CMG=∠EMC=45°,
∴∠F=∠GMC.
∴△GFE≌△GMC∴EG=CG,∠FGE=∠MGC.
∵∠FMC=90°,MF=MD,FG=DG,
∴MG⊥FD,
∴∠FGE+∠EGM=90°,
∴∠MGC+∠EGM=90°,
即∠EGC=90°,
∴EG⊥CG.
如图,在正方形abcd中,e为对角线bd上一点,过点e作ef垂直于bd交bc于e于f,连接df,g为df中点,连接eg、
已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG. (1
已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.求证:
4.已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.
已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.
已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.
九年级数学 几何已知正方形ABCD中,E为AB上一点,过E点作EF⊥BE于E,G为DF的中点,连接EG,CG.求证:EG
已知正方形ABCD中,E为对角线BD上一点,过E点做EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG
四边形ABCD是正方形,点E是边BC的中点且∠AEF=90°,EF交正方形外角平分线CF与点F,取AB的中点G,连接EG
已知,E是正方形ABCD的一边AB上任一点,EG⊥BD于G,EF⊥AC于F,AC=10cm,则EF+EG=、
智商高的进1、已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG
在四边形ABCD的对角线BD上取一点G,作GE平行于DA,交AB于点E,作GF平行于DC,交BC于点F,连结EF.