求∫∫(xdydz+ydzdx+zdxdy)/(x^2+y^2+z^2)^1/2,其中 ∑是球面x^2+y^2+z^2=
用高斯公式计算曲面积分∫∫(zdxdy+xdydz+ydzdx)/(x^2+y^2+z^2)
利用高斯公式计算曲面积分∑xdydz+ydzdx+zdxdy,其中∑为球面(x-a)^2+(y-b) ^2+(z-c)
曲面为锥面z=根号(x^2+y^2)与z=1所围立体的表面外侧,则∫∫xdydz+ydzdx+zdxdy=
利用高斯公式计算曲面积分I=∫∫(∑)xdydz+ydzdx+zdxdy ,其中∑为半球面z=√(R^2-x^2-y^2
∫∫xdydz+ydzdx+(z^2-2z)dxdy 其中∑为锥面 z=根号x^2+y^2 被平面z=0 和z=1所截得
计算第二型曲面积分∫∫xdydz+ydzdx+zdxdy,其中S是曲面|x|+|y|+|z|=1的外侧.
计算第二型曲面积分∫∫(x^3+e^ysinz)dydz-3x^2ydzdx+zdxdy,其中S是下半球面z=-根号里1
利用高斯公式计算 2xdydz+ydzdx-2012x^3dxdy,其中Σ为Ω:x^2+y^2+z^2≤1,z≥0的整个
曲面积分∫∫xdydz+z^2dxdy/(x^2+y^2+z^2),其中曲面∑是由x^2+y^2=R^2及z=R,z=-
高斯公式求曲面积分...求∫∫(xdydz+z^2dxdy)/(x^2+y^2+z^2),
高数积分求解答求积分:∫∫xdydz+y2dzdx+zdxdy,其中∑是平面x+y+z=1被三个坐标平面所截得的三角形区
利用高斯公式计算曲面积分∫∫xdydz+z^2dxdy/(x^2+y^2+z^2),其中曲面∑是由x^2+y^2=R^2