作业帮 > 数学 > 作业

一道定积分 见图

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 07:51:39
一道定积分 见图
一道定积分 见图
答:D
f(x)=∫(0,2x)f(t/2)dt+ln2,显然f(0)=ln2
两边求导
f'(x)=f(2x/2)*(2x)'
即f'(x)=2f(x)
f'(x)/f(x)=2
两边积分
∫f'(x)/f(x)dx=∫2dx
∫1/f(x)df(x)=∫2dx
得到lnf(x)=2x+C1
所以f(x)=Ce^(2x)
初始条件f(0)=ln2
解得C=ln2
那么f(x)=e^(2x)ln2