过抛物线C:y2=2px(p>0)上一点M(P/2,P) 作倾斜角互补的两条直线,分别与抛物线交于A、B两点(1)求证:
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/14 21:49:53
过抛物线C:y2=2px(p>0)上一点M(P/2,P) 作倾斜角互补的两条直线,分别与抛物线交于A、B两点(1)求证:直线AB的斜率为定值;
(2)已知A、B两点均在抛物线C:y2=2px(y≤0)上,若△MAB的面积的最大值为6,求抛物线的方程
(2)已知A、B两点均在抛物线C:y2=2px(y≤0)上,若△MAB的面积的最大值为6,求抛物线的方程
(1)证明:设 A(y1^2/2p,y1) B(y2^2/2p,y2)
由KAM=-kBM可得y1+y2=-2p
∴ KAB=(y1-y2)/(y1^2/2p-y2^2/2p)=-1
(2)AB的方程为:y-y1=-(x-y1^2/2p),即x+y -y1-y1^2/2p=0
点M到AB的距离d= |3p2-2py1-y1^2|/2√2p
AB=√2|x1-x2|= √2|y2^2/2p-y1^2/2p|=√ 2/2p|y1+y2||y1-y2|=2√2|p+y1|
又∵y1+y2=-2p,y1y2<0 y1∈[-2p,0]
令p+y1=t ∴t∈[-p,p]
S△MAB=1/2•2√2|p+y1|•|3p^2-2py1-y1^2|/2√2p= (1/(2p))*I4p^2t-t^3|
设f(t)=|4p2t-t3| ∵f(t)为偶函数,故只需考虑t∈[0,p]时
f(t)=4p^2t-t^3,f′(t)=4p^2-3t^2>0,∴f(t)在[0,p]单调递增
∴当t=p时,f(t)的最小值为:3p^3
∴S△MAB=(1/(2p))•3p^3=3p^2/2=6
∴p=2,则抛物线方程为:y^2=4x
不好意思符号多了些,还望见谅╭(∩ ω ∩#)╮
由KAM=-kBM可得y1+y2=-2p
∴ KAB=(y1-y2)/(y1^2/2p-y2^2/2p)=-1
(2)AB的方程为:y-y1=-(x-y1^2/2p),即x+y -y1-y1^2/2p=0
点M到AB的距离d= |3p2-2py1-y1^2|/2√2p
AB=√2|x1-x2|= √2|y2^2/2p-y1^2/2p|=√ 2/2p|y1+y2||y1-y2|=2√2|p+y1|
又∵y1+y2=-2p,y1y2<0 y1∈[-2p,0]
令p+y1=t ∴t∈[-p,p]
S△MAB=1/2•2√2|p+y1|•|3p^2-2py1-y1^2|/2√2p= (1/(2p))*I4p^2t-t^3|
设f(t)=|4p2t-t3| ∵f(t)为偶函数,故只需考虑t∈[0,p]时
f(t)=4p^2t-t^3,f′(t)=4p^2-3t^2>0,∴f(t)在[0,p]单调递增
∴当t=p时,f(t)的最小值为:3p^3
∴S△MAB=(1/(2p))•3p^3=3p^2/2=6
∴p=2,则抛物线方程为:y^2=4x
不好意思符号多了些,还望见谅╭(∩ ω ∩#)╮
过抛物线y2=2px(p>0)的焦点F作倾斜角为45°的直线交抛物线于A,B两点,若AB的长为8,则P=( )
如图,已知抛物线C:y2=2px(p>0)的准线与x轴交于M点,过M点斜率为k的直线l与抛物线C交于A、B两点.
过直角坐标平面xOy中的抛物线y2=2px(p>0)的焦点F作一条倾斜角为π4的直线与抛物线相交于A、B两点.
过抛物线y2=2px(p>0)的焦点F作直线与抛物线交于A、B两点,以AB为直径的圆与抛物线的准线的位置关系是( )
过y^2=2px(x>0)上一点P(x0,y0)(y0>0)作两直线分别交抛物线于A(X1,Y1)B(X2,Y2)
F是抛物线y2=2px(p>0)的焦点,过焦点F且倾斜角为θ的直线交抛物线于A,B两点,设|AF|=a,|BF|=b,则
已知抛物线y2=2px(p>0),过焦点F的直线l交抛物线于A,B两点,直线L的倾斜角为a,求证:AB=2p/sin2a
已知直线l过抛物线y*2=2px(p〉0)的焦点,并且与抛物线交于A(x1,x2)和B (y1,y2)两点 (1)求证y
7.过抛物线y*2=2px(p>0)的焦点F作倾斜角为45度的直线交抛物线与A,B两点,若线段AB的长为8,求抛物线的标
过抛物线y2=2px(p>0)的焦点F作直线交抛物线于A、B两点,若|AF|=2,|BF|=6,则p=______.
p是抛物线y^2=4x上的一点,过P分别作俩直线交抛物线于不同的两点A(X1,X2)B(X2,Y2),PA与PB分别交x
过抛物线y=x^2上一点P(x0,y0)作两条倾斜角互补的直线,分别交抛物线于