设abc为不全等的正数,abc等于1,求证1/a+1/b+1/c>a^(1/2)+b^(1/2)+c^(1/2)
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/13 23:08:29
设abc为不全等的正数,abc等于1,求证1/a+1/b+1/c>a^(1/2)+b^(1/2)+c^(1/2)
因为abc=1
所以,1/a+1/b+1/c
=abc/a+abc/+abc/c
=bc+ac+ab
=1/2(ab+bc+bc+ca+ca+ab)
>1/2[2(ab^2c)^(1/2)+2(bc^2a)^(1/2)+2(a^2bc)^(1/2)] (因为abc不全相等,所以不能取等号)
=1/2[2*b^(1/2)+2*c^(1/2)+2*a^(1/2)] (因为abc=1)
=b^(1/2)+c^(1/2)+a^(1/2)
所以,1/a+1/b+1/c
=abc/a+abc/+abc/c
=bc+ac+ab
=1/2(ab+bc+bc+ca+ca+ab)
>1/2[2(ab^2c)^(1/2)+2(bc^2a)^(1/2)+2(a^2bc)^(1/2)] (因为abc不全相等,所以不能取等号)
=1/2[2*b^(1/2)+2*c^(1/2)+2*a^(1/2)] (因为abc=1)
=b^(1/2)+c^(1/2)+a^(1/2)
设abc是不全想的的正数.求证(1)(a+b)(b+c)(c+a)〉8abc (2)a+b+c〉根号ab+根号bc+根号
已知a,b,c是不全等的正数,求证:(a²+1)(b²+1)(c²+1)>8abc
求一道数学题的解 已知a,b,c是不全等的正数,求证(ab+a+b+1)(ab+ac+bc+c*c)>16abc
已知a,b,c是不全相等的正数,求证(a^2+1)(b^2+1)(c^2+1)>8abc
已知a,b,c是不全相等的正数,求证(a^2+1)(b^2+1)(c^2+1)>8abc
已知a,b,c是不全相等的正数,求证:(ab+a+b+1)(ab+ac+bc+c^2)>16abc.
设a,b,c为正数求证:1/(a^3+b^3+abc)+1/(b^3+c^3+abc)+1/(a^3+c^3+abc)
已知a,b,c是不全相等的正数,求证(ab+a+b+1)(ab+ac+bc+c*c)大于16abc
不等式证明设a,b,c为正数求证:1/(a^3+b^3+abc)+1/(b^3+c^3+abc)+1/(a^3+c^3+
已知a,b,c是不全相等的正数,求证:(ab+a+b+1)(ab+ac+bc+c2)>16abc.
基本不等式及其应用 已知a,b,c是不全相等的正数,求证:(a^+1)(b^+1)(c^+1)大于8abc^表示平方
已知abc不全等的正数 求证b+c-a/a+c+a-b/b+a+b-c/c>3