已知数列an满足a(n+1)=-an^2+2an,且a1=9/10,令bn=lg(1-an),求1/bn所有项和
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/20 05:30:47
已知数列an满足a(n+1)=-an^2+2an,且a1=9/10,令bn=lg(1-an),求1/bn所有项和
a = -an^2 + 2an
a - 1 = - an^2 + 2an - 1
a - 1 = - (an -1)^2
a2 - 1 = - (a1 - 1)^2
a3 - 1 = - (a2 - 1)^2 = -(a1 -1)^4
a4 - 1 = - (a3 - 1)^2 = -(a1 - 1)^8
a5 - 1 = - (a4 - 1)^2 = -(a1 - 1)^16
余此类推,得到
an -1 = - (a1 - 1)^[2^(n-1)]
代入 a1 = 9/10
an - 1 = - (1/10)^[2^(n-1)]
1 - an = (1/10)^[2^(n-1)] = 10^[-2^(n-1)]
bn = lg(1 - an) = -2^(n-1)
1/bn = -1/2^(n-1)
1/b1 = -1
Sn = -[1 + 1/2 + 1/2^2 + …… + 1/2^(n-1)]
= - [1 - (1/2)^n]/(1 - 1/2)
= -2(1 - 1/2^n)
a - 1 = - an^2 + 2an - 1
a - 1 = - (an -1)^2
a2 - 1 = - (a1 - 1)^2
a3 - 1 = - (a2 - 1)^2 = -(a1 -1)^4
a4 - 1 = - (a3 - 1)^2 = -(a1 - 1)^8
a5 - 1 = - (a4 - 1)^2 = -(a1 - 1)^16
余此类推,得到
an -1 = - (a1 - 1)^[2^(n-1)]
代入 a1 = 9/10
an - 1 = - (1/10)^[2^(n-1)]
1 - an = (1/10)^[2^(n-1)] = 10^[-2^(n-1)]
bn = lg(1 - an) = -2^(n-1)
1/bn = -1/2^(n-1)
1/b1 = -1
Sn = -[1 + 1/2 + 1/2^2 + …… + 1/2^(n-1)]
= - [1 - (1/2)^n]/(1 - 1/2)
= -2(1 - 1/2^n)
已知数列{an}满足a1=1,a2=2,an+2=(an+an+1)/2,n∈N*.令bn=an+1-an,证明{bn}
在数列an中,已知a1=2,an+1=2an/an +1,令bn=an(an -1).求证bn的前n项和
已知数列{an}满足:a1+a2+a3+…+an=n-an 求证{an-1}为等比数列 令bn=(2-n)(an-1)求
已知数列{an}满足a1+a/4,(1-an)a(n+1)=1/4,令bn+an-1/2 求证数列{1/bn}为等差数列
已知数列an满足;a1=1,an+1-an=1,数列bn的前n项和为sn,且sn+bn=2
已知数列an和bn满足a1=2,(an)-1=an[a(n+1)-1],bn=an-1,n属于N*
已知数列an的n项和为Sn,且an+1=2Sn/an,a1=1 (1)求an (2)设数列bn满足(2an-1)(2bn
已知数列{an}、{bn}满足:a1=1/4,an+bn=1,bn+1=bn/1-an^2 (1)求{an}的通项公式
数列an满足an+1=2an-1且a1=3,bn=an-1/anan+1,数列bn前n项和为Sn.求数列an通项an,
已知数列{an}满足an+Sn=n,数列{bn}满足b1=a1,且bn=an-a(n-1),(n≥2),试求数列{bn}
已知数列{an}{bn}满足a1=1,a2=3,b(n+1)/bn=2,bn=a(n+1)-an,(n∈正整数),求数列
已知数列{an}和{Bn}满足a1=2 an-1=an(an+1-1) bn=an-1 n∈N+