证明√X2+Y2+√(X-1)2+Y2+√X2+(Y-1)2+√(X-1)2+(Y-1)2>=2√2并求=成立时X与Y的
已知实数x.y满足(x2+y2)(x2+y2-1)=2,求x2+y2的值
已知圆x2+y2-2x-2y+1=0求x2+y2的最大值
已知[(x2+y2)-(x-y)2+2y(x-y)]÷4y=1,求4x/4x2-4y2-1/2x+y的值,
求圆C1:X2+y2-2y=0与圆C2:x2+y2-2√3x-1=0的公切线方程
已知x-y+1,X2+Y2=25 求(x+y)2和x2-xy+y2的值
已知x,y为正数,且x2+ y2/2=1,则x√1+y2的最大值?
求圆x2+y2+2x-6y+1=0与圆x2+y2+2y-..
x(x-1)-(x2-y)=-3,求x2-y2-2xy的值
x(x-1)-(x2-y)=-3,求x2+y2-2xy的值
已知x(x-1)-(x2-y)=-3,求x2+y2-2xy的值
已知点(x,y)在圆(x-2)^2+(y+3)^2=1上,求√(x2+y2+2x-4y+5)的最大值和最小值
已知实数x,y 满足x2+y2+2x-2√3y=0求: