作业帮 > 数学 > 作业

高等数学题,高数题,rt

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/17 14:13:13
高等数学题,高数题,
rt
高等数学题,高数题,rt
函数连续,说明f(x)在x→0时的取值为f(0)即为a
所以:x→0时,lim f(x) = lim 1/x - 1/(e^x - 1) = lim (e^x-1-x) / x(e^x - 1) = lim (e^x-0-1)/(e^x-1+xe^x)
通分 洛比达法则
= lim (e^x)/(e^x+e^x+xe^x) = 1/2
因还是0/0型,所以再用 代值
所以a=1/2
再问: 因还是0/0型,所以再用 代值 用什么代替?
再答: 首先表明:写的每一个说明表示相应 “=” 处的操作方法。 因还是0/0型,所以再用洛比达法则。(只有0/0型或∞/∞才能用洛比达法则) 最后的“代值”表示在最后个“=”处,因为此时的分母已经不为“0”了(e^x+e^x+xe^x=2e^0+0e^0 = 2),所以不需要再做什么操作了,直接将x=0代入分子分母,得:e^0/2=1/2