∫y ds,其中L为摆线一拱x=a(t-sint) y=a(1-cost)的曲线积分
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/14 03:56:55
∫y ds,其中L为摆线一拱x=a(t-sint) y=a(1-cost)的曲线积分
32a^2 / 3
32a^2 / 3
t:0→2π
ds=√[(dx/dt)²+(dy/dt)²] dt=√[a²(1-cost)²+a²sin²t] dt=a√(2-2cost)dt=a√[4sin²(t/2)]dt=2asin(t/2)dt
∫ y ds
=∫[0→2π] 2a²(1-cost)sin(t/2) dt
=4a²∫[0→2π] sin³(t/2) dt
=8a²∫[0→2π] sin³(t/2) d(t/2)
=-8a²∫[0→2π] sin²(t/2) d[cos(t/2)]
=-8a²∫[0→2π] [1-cos²(t/2)] d[cos(t/2)]
=-8a²[cos(t/2) - (1/3)cos³(t/2)] |[0→2π]
=-8a²(-1 - 1/3 - 1 - 1/3)
=32a²/3
【数学之美】团队为您解答,若有不懂请追问,如果解决问题请点下面的“选为满意答案”.
ds=√[(dx/dt)²+(dy/dt)²] dt=√[a²(1-cost)²+a²sin²t] dt=a√(2-2cost)dt=a√[4sin²(t/2)]dt=2asin(t/2)dt
∫ y ds
=∫[0→2π] 2a²(1-cost)sin(t/2) dt
=4a²∫[0→2π] sin³(t/2) dt
=8a²∫[0→2π] sin³(t/2) d(t/2)
=-8a²∫[0→2π] sin²(t/2) d[cos(t/2)]
=-8a²∫[0→2π] [1-cos²(t/2)] d[cos(t/2)]
=-8a²[cos(t/2) - (1/3)cos³(t/2)] |[0→2π]
=-8a²(-1 - 1/3 - 1 - 1/3)
=32a²/3
【数学之美】团队为您解答,若有不懂请追问,如果解决问题请点下面的“选为满意答案”.
计算对弧长的曲线积分∫y^2ds,其中C为摆线x=a(1-sint),y=a(1-cost)(0≤t≤2π),答案(25
计算曲线积分∫L(2xy+3sinx)dx+(x2-ey)dy,其中L为摆线 x=t-sint Y=1-cost 从点O
高等数学摆线求摆线x=a(t - sint),y=a(1 -cost)的一拱(0≤t≤2∏) 的长度
求∫∫y^2dσ,其中D是由摆线x=a(t-sint),y=a(1-cost)(0≤t≤2π)的一拱与x轴所围成
高数定积分几何应用求摆线x=a(t-sint),y=a(1-cost)的一拱(0≤t≤2π)与y=0绕y轴(其实等价于绕
求摆线x=a(t-sint),y=a(1-cost)的一拱与横轴围成的图形面积
在摆线x=a(t-sint),y=(1-cost)上求分摆线第一拱成1:3的点的坐标
求摆线的参数方程x=a(t-sint) 和 y=a(1-cost)所确定的函数y=y(x)的
求摆线x=a(t-sint),y=a(1-cost)的一拱(0≤t≤2π)与y=0绕x轴所转成图形的体积.
摆线x=a(t-sint),y=a(1-cost)的一拱和直线y=0围成的图形绕x轴旋转的旋转体体积多少?
求由摆线x=a(t-sint),y=a(1-cost)的一拱(0≦t≦2ㄇ)与x轴所围成的图形的.面积
求由摆线x=a(t-sint),y=a(1-cost)的一拱(0≦t≦2π)与x轴所围成的图形面积