设n阶矩阵A满足A^m=0,m是正整数,证E-A可逆
线性代数逆矩阵题设N阶矩阵A满足A的M方=0,M是正整数.试证E-A可逆,且(E-A)的-1次方=E+A+A的平方+A的
设n阶矩阵A满足A的m次方等于0,m是正整数,证明E-A可逆,且E-A的逆矩阵等于E+A+A^2+A^3+.+A^m-1
设n阶矩阵A满足Am=0,m是正整数,证:E-A可逆,且(E-A)=E+A+A2+A3+……Am-1
设矩阵A满足A^2-3A+2E=0,证明A+4E为可逆阵,并求其逆矩阵,设n为正整数,那么A+nE为可逆矩阵么?
设A为n阶矩阵A的m次方等于0矩阵,证明E-A可逆
设A是m阶可逆阵,B是m×n矩阵,C是n×m矩阵且矩阵(E+C·A的逆·B)可逆.证明:(A+BC)可逆,且(A+BC)
n阶矩阵A满足A^m=O证明对任意实数k,E+kA为可逆矩阵
n阶矩阵A满足A^m=O证明对任意实数k,E+kA为可逆矩阵.
设n阶方阵A满足A*A-A+E=0,证明A喂可逆矩阵
设A是m*n矩阵,证明:r(A)=r的充分必要条件是存在m阶可逆矩阵P和n阶可逆矩阵Q,
设A是n阶矩阵,满足A的k次方等于0(k是正整数).求证:E-A可逆,并且(E-A)的-1次方等于E+A+A的2次方+…
n阶矩阵A满足A²-3A+2E=0,-证明A-3E是可逆矩阵