计算二重积分 (x^2+y^2)dxdy d={(x,y)|x^2+y^2
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/19 06:07:04
计算二重积分 (x^2+y^2)dxdy d={(x,y)|x^2+y^2
用极坐标求解就可以了
如果没算错的话答案是:(3πa^5)/2
其中需要用到∫(0,π/2)(sinα)^ndα 这个积分的积分公式
上面把系数弄错了,多写了一个a
具体解答如下:
α的积分区间是【-π,π】
所以累次积分为:∫(-π,π)dα∫(0,2acosα)r^3dr=∫(-π,π)dα【1/4 * r^4】|(0,2acosα)=4a^4∫(-π,π)(cosα)^4dα=4a^4*2*(3/4)*(1/2)*π/2=3πα∧4/2
其中利用到了对称区间积分中函数的奇偶性,还有就是
∫(0,π/2)(sinα)^ndα
=∫(0,π/2)(cos)^ndα
以及他们的积分公式(n分奇偶性来讨论)
如果没算错的话答案是:(3πa^5)/2
其中需要用到∫(0,π/2)(sinα)^ndα 这个积分的积分公式
上面把系数弄错了,多写了一个a
具体解答如下:
α的积分区间是【-π,π】
所以累次积分为:∫(-π,π)dα∫(0,2acosα)r^3dr=∫(-π,π)dα【1/4 * r^4】|(0,2acosα)=4a^4∫(-π,π)(cosα)^4dα=4a^4*2*(3/4)*(1/2)*π/2=3πα∧4/2
其中利用到了对称区间积分中函数的奇偶性,还有就是
∫(0,π/2)(sinα)^ndα
=∫(0,π/2)(cos)^ndα
以及他们的积分公式(n分奇偶性来讨论)
计算二重积分∫∫|y-x^2|dxdy,其中区域D={(x,y)|-1
计算二重积分,∫∫4(x*2+y*2)dxdy,)其中D:x*2+y*2
计算二重积分 根号下(x^2+y^2)dxdy,D为x^2+y^2=2y所围
计算二重积分 y *根号(x^2+y^2) dxdy,其中D:x^2+y^2=0
计算二重积分,∫∫(x+y)dxdy,其中D为x^2+y^2≤x+y
计算二重积分∫∫ln(x^2+y^2)dxdy,其中积分区域D={(x,y)/1
计算二重积分∫∫√(x^2+y^2)dxdy,其中D:x^2+y^2≤2x.D
计算二重积分I=∫∫(D)x^2*e^(-y^2)dxdy,其中D由直线y=x,y=x与y轴围成
计算二重积分∫∫(x^2+y^2+x)dxdy,其中D为区域x^2+y^2
∫∫(y/x)^2dxdy,D为曲线y=1/x,y=x,y=2所围成的区域计算二重积分
计算二重积分 ∫ ∫D e^(x^2+y^2) dxdy,其中 D:x^2+y^2≤1
计算二重积分∫∫3x/y² dxdy ,其中D由x=2,y=1/x和y=x围成.