高数证明问题设f(x)在(0,﹢∞)上具有二阶导数,又知对一切x>0有|f(x)|≤a,|f''(x)|≤b,其中,a,
设f(x)在区间[a,b]上具有二阶导数,且f'(a)f'(b)>0试证明
设函数f(x)在闭区间[a,b]上具有二阶导数,且f"(x)>0,证明∫(a,b)f(x)dx>f(
设f(x)在[a,b]上具有二阶导数 且f(a)=f(b)=0 f'(a)f'(b)>0 证明 至少存在一点
f(x)在(a,b)上具有二阶连续导数又 f'(a)=f'(b)=0 证明:存在u属于(a,b) f(u)
若函数f(x)具有二阶导数,又设f(a)=f(c)=f(b),其中a
高数中值定理问题设f(x)在[1,2]上具有二阶导数f''(x),且f(2)=f(1)=0,如果F(X)=(x-1)f(
有关高数的证明题设函数 f(x)在[0,∞)上有二阶连续导数,且对任意x>=0有 f(x)的二阶导数>=k,其中k>0为
设f(x)在区间[-a,a](a>0)上具有二阶连续导数,f(0)=0,(1)写出f(x)带有拉格朗日余项
高等数学问题已知函数f(x)在(-∞,+∞)内具有二阶导数,且limf(x)/x=1,f''(x)>0,证明:f(x)>
设函数f(x)具有二阶导数,且f(x)二阶倒大于0,证明:f(a+h)+f(a-h)≥2f(a)
设f(x)在[a,b]上存在二阶导数,f(a)>0,f(b)>0,∫a到b f(x)dx=0,证明存在ζ∈(a,b),使
设f(x)在[0,1]上具有二阶连续导数,且|f''(x)|