在△ABC中,∠ACB=45°,点D为射线BC上一动点(与点B、C不重合),连接AD,以AD为一边在AD右侧作正方形AD
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 17:47:23
在△ABC中,∠ACB=45°,点D为射线BC上一动点(与点B、C不重合),连接AD,以AD为一边在AD右侧作正方形ADEF
1.如果AB=AC,如图①,且点D在线段BC上运动.试判断线段CF与BD之间的位置关系,并证明你的结论.
2.如果AB≠AC,且点D在线段BC的延长线上运动.请在图②画出相应的示意图,此时(1)中的结论是否成立?请证明你的结论
3.若正方形ADEF的边DE所在直线与直线CF相交于点P,已知AC=4√2,CD=2,求线段CP的长
第一问不用了呢~第二问第三问要辅助线的图哟~谢
不要用相似呢~
1.如果AB=AC,如图①,且点D在线段BC上运动.试判断线段CF与BD之间的位置关系,并证明你的结论.
2.如果AB≠AC,且点D在线段BC的延长线上运动.请在图②画出相应的示意图,此时(1)中的结论是否成立?请证明你的结论
3.若正方形ADEF的边DE所在直线与直线CF相交于点P,已知AC=4√2,CD=2,求线段CP的长
第一问不用了呢~第二问第三问要辅助线的图哟~谢
不要用相似呢~
1、∵AB=AC ∠ACB=45°
∴△ABC是等腰直角三角形
且∠BAC=90° 3ACB=45°
∵四边形ADEF是正方形
∴AD=AF ∠DAF=90°
∴∠BAD+∠DAC=∠DAC+∠CAF
即∠BAD=∠CAF
在△ABD和△ACF中
AD=AF AB=AC ∠BAD=∠CAF
∴△ABD≌△ACF
∴∠ABC=∠ACF=45°
∴∠FCB=∠ACF+∠ACB=90
∴CF⊥BD(BC)
2、过A做GA⊥AC交BC于G
∵∠ACB=45°
∴△AGC是等腰直角三角形
且∠GAC=90° ∠AGC=45° AG=AC
∵四边形ADEF是正方形
∴AF=AD ∠FAD=90°
∴∠FAD+∠DAC=∠DAC+∠AGC
即∠FAC=∠DAG
在△AGD和△ACF中
AF=AD AG=AC ∠FAC=∠DAG
∴△AGD≌△ACF
∴∠ACF=∠AGC(∠AGD)=45°
∴∠ACB=∠ACF+∠ACB=90°
∴CF⊥BD(BC,GC)
3、做AQ⊥BC
∵∠ACB=45°
∴△AQC是等腰直角三角形
AQ=QC=√(AC²/2)=4
∴DQ=QC-CD=2
∴AD=DE=√(AQ²+DQ²)=2√5
∵CF⊥BC(BD)
∴∠DPC+∠PDC=∠QAD+∠ADQ ∠ADQ+∠PDC=∠ADE=90°
∴∠QAD=∠PDC
∴△AQD∽PDC
∴AQ/CD=DQ/CP
CP=CD×DQ/AQ=2×2/4=1
∴△ABC是等腰直角三角形
且∠BAC=90° 3ACB=45°
∵四边形ADEF是正方形
∴AD=AF ∠DAF=90°
∴∠BAD+∠DAC=∠DAC+∠CAF
即∠BAD=∠CAF
在△ABD和△ACF中
AD=AF AB=AC ∠BAD=∠CAF
∴△ABD≌△ACF
∴∠ABC=∠ACF=45°
∴∠FCB=∠ACF+∠ACB=90
∴CF⊥BD(BC)
2、过A做GA⊥AC交BC于G
∵∠ACB=45°
∴△AGC是等腰直角三角形
且∠GAC=90° ∠AGC=45° AG=AC
∵四边形ADEF是正方形
∴AF=AD ∠FAD=90°
∴∠FAD+∠DAC=∠DAC+∠AGC
即∠FAC=∠DAG
在△AGD和△ACF中
AF=AD AG=AC ∠FAC=∠DAG
∴△AGD≌△ACF
∴∠ACF=∠AGC(∠AGD)=45°
∴∠ACB=∠ACF+∠ACB=90°
∴CF⊥BD(BC,GC)
3、做AQ⊥BC
∵∠ACB=45°
∴△AQC是等腰直角三角形
AQ=QC=√(AC²/2)=4
∴DQ=QC-CD=2
∴AD=DE=√(AQ²+DQ²)=2√5
∵CF⊥BC(BD)
∴∠DPC+∠PDC=∠QAD+∠ADQ ∠ADQ+∠PDC=∠ADE=90°
∴∠QAD=∠PDC
∴△AQD∽PDC
∴AQ/CD=DQ/CP
CP=CD×DQ/AQ=2×2/4=1
初中有难度的几何题在△ABC中,∠ACB为锐角,点D为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形AD
已知:在△ABC中,∠ACB为锐角,D是射线BC上一动点(D与C不重合).以AD为一边向右侧作等边△ADE(C与E不重合
如图甲,在△ABC中,∠ACB为锐角,点D为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.解答
数学图形变换题在△ABC中,∠ACB为锐角,点D为线段BC上一点(与点B、C不重合),连接AD,以AD为一边在AD的右侧
在三角形ABC中,角ACB为锐角,点D为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.试探究:
已知:在三角形ABC中,角ACB为锐角,D是射线BC上的一动点(D与C不重合),以AD为一边向右侧作等边三角形(C与E不
在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠D
在三角形ABC中,角ABC为锐角,点D为射线BC上一动点,连接AD,以AD为一边在AD的右侧作正方形ADEF
在△ABC中 角ACB是锐角 点D是射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF .
在△ABC中,AB=AC,点D是直线BC上一点(不与BC重合),以AD为一边在AD的右侧作三角形ADE,使AD=AE,∠
在三角形ABC中,AB=AC,点D是直线BC上的一点(不与B、C重合),以AD为一边在AD的右侧作三角形ADE
在△ABC中,∠ACB=45度.点D为射线BC上一动点,连接AD,AD逆时针旋转90度为AE,连EC,做DF垂直AD交C