求证等差数列,a1=1 ,an=2a(n-1)+ 2^(n-1) 设bn= an/2^(n-1) 求证bn是等差数列
已知数列{an}中a1=-1且(n+1)an,(n+2)an+1(是下标)成等差数列,设bn=(n+1)an-n+2求证
已知数列{an}是等差数列,且bn=an+a(n-1),求证bn也是等差数列
已知数列{an}满足a1=4,an=4-4/an-1(n>=2),设bn=1/an-2(1)求证{bn}是等差数列;(2
在数列{an}中,a1=1,An+1=1-1/4an,bn=1/2an-1,其中n∈N*求证{bn}为等差数列
已知数列{an}满足a1+a/4,(1-an)a(n+1)=1/4,令bn+an-1/2 求证数列{1/bn}为等差数列
已知数列an是等差数列,且bn=an+a(n+1).求证数列bn是等差数列.
已知数列{An}是等差数列,且Bn=An+A(n+1).求证数列{Bn}是等差数列
已知数列an的前n项和为sn=5/6n(n+3),1:求证an为等差数列 2:设bn=a3n+a
已知数列an满足a1=4 an=4-4/an-1(n大于等于2) 求证bn是等差数列 求数列an的通项公式
在数列}an}中,a1=2,an=2an-1+2^n+1(n》=2) 令bn=an/2^n,求证{bn}是等差数列.
在数列{an}中,a1=2,an=2an-1+2^(n+1)(n>=2,)令bn=an/2^n,求证bn是等差数列,并写
{an},{bn}中a1=2,b1=4,an,bn,an+1成等差数列bn,an+1,bn+1成等比数列(n∈N*)