用球坐标计算三重积分I=∫∫∫z^2dv 其中图形是由x^2+y^2+z^2
计算三重积分I=∫∫∫Ω(x^2+y^2+z^2)dv,其中Ω:x^2+y^2+z^2=a^2
高数三重积分利用球面坐标计算三重积分Ω根号下x^2+y^2+z^2dv其中Ω是由锥面z=根号x^2+y^2 及球面x^2
∫∫∫Ω√x^2+y^2+z^2dv,Ω是由球面x^2+y^2+z^2=z所围成的区域?用球面坐标变换求上述三重积分.
计算三重积分∫∫∫Z√(x∧2+y∧2)dv,其中Ω是由曲面z=x∧2+y∧2,平面z=1所围成的立体
计算三重积分∫∫∫(x^2+y^2+z^2)dv,其中Ω由z=x^2+y^2+z^2所围成的闭区域.
三重积分计算I=∫∫∫(x+y+z)^2dv..设V:x^2+y^2+z^2
计算三重积分 ∫∫∫Ωdv,其中Ω是由曲面x^2+y^2=2z及平面z=2平面所围成的闭区域
计算三重积分∫∫∫z^2dv,其中Ω是曲面z=(x^2+y^2)^(1/2),z=1,z=2所围成的区域
计算三重积分I=∫∫∫Ω(x^2+y^2+z^2)dv,其中Ω:(x/a)^2+(y/b)^2+(z/c)^2<=
求三重积分∫dv,积分区域是由z=x^2+y^2,z=1/2*(x^2+y^2),x+y=±1,x-y=±1围成
$$$︸(x^2+y^2+z^2)dv,其中︸是由球面x^2+y^2+z^2=1所围成的闭区域,计算此三重积分
在球面坐标系下计算三重积分∫∫∫Ωz^2dv,Ω:x^2+y^2+z^2≤R^2,x^2+y^2