求方程组的正实数解mn+p^2=7 np+m^2=8 pm+n^2=9求(m,n,p)强行解估计解不出,可能要用到代换技
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 19:50:21
求方程组的正实数解
mn+p^2=7
np+m^2=8
pm+n^2=9
求(m,n,p)
强行解估计解不出,可能要用到代换技巧
mn+p^2=7
np+m^2=8
pm+n^2=9
求(m,n,p)
强行解估计解不出,可能要用到代换技巧
用mathematica的精确解命令
Solve[{m*n + p^2 == 7, n*p + m^2 == 8, p*m + n^2 == 9}, {m, n, p}]
与数值解命令
NSolve[{m*n + p^2 == 7, n*p + m^2 == 8, p*m + n^2 == 9}, {m, n, p}]
解答,都显示这个方程组有4组实解和4组复解
4组实解中没有找到正实数解
由于精确解的表达式很麻烦(所给形式已经经过化简).我只给出第一个精确解的m值.从精确解的形式可以看出,想找到具体解题步骤是不太可能的:m=(1/4991)(1/384 (2892 - 4 (43781688 - 5208 Sqrt[56298])^(1/3) -8(3 (1824237 + 217 Sqrt[56298]))^(1/3) - 573/Sqrt[241/16 + 1/24 (43781688 - 5208 Sqrt[56298])^(1/3) + (1824237 + 217 Sqrt[56298])^(1/3)/(4 3^(2/3))])^(3/2) \[Sqrt](1/6 (35/8 - 1/2 \[Sqrt](241/16 + 1/24 (43781688 - 5208 Sqrt[56298])^(1/3) + (1824237 + 217 Sqrt[56298])^(1/3)/(4 3^(2/3))) -1/8 \[Sqrt](1/6 (2892 - 4 (43781688 - 5208 Sqrt[56298])^(1/3) - 8 (3 (1824237 + 217 Sqrt[56298]))^(1/3) - 573/(\[Sqrt](241/16 + 1/24 (43781688 - 5208 Sqrt[56298])^(1/3) + (1824237 + 217 Sqrt[56298])^(1/3)/( 4 3^(2/3)))))))) - 27559/4 \[Sqrt](35/8 - 1/2 \[Sqrt](241/16 + 1/24 (43781688 - 5208 Sqrt[56298])^(1/3) + (1824237 + 217 Sqrt[56298])^(1/3)/(4 3^(2/3))) - 1/8 \[Sqrt](1/ 6 (2892 - 4 (43781688 - 5208 Sqrt[56298])^(1/3) - 8 (3 (1824237 + 217 Sqrt[56298]))^(1/3) - 573/(\[Sqrt](241/16 + 1/24 (43781688 - 5208 Sqrt[56298])^(1/3) + (1824237 + 217 Sqrt[56298])^(1/3)/(4 3^(2/3))))))) + (151463 \[Sqrt](35/8 - 1/2 \[Sqrt](241/16 + 1/24 (43781688 - 5208 Sqrt[56298])^(1/3) + (1824237 + 217 Sqrt[56298])^(1/3)/(4 3^(2/3))) - 1/8 \[Sqrt](1/6 (2892 - 4 (43781688 - 5208 Sqrt[56298])^(1/3) - 8 (3 (1824237 + 217 Sqrt[56298]))^(1/3) - 573/(\[Sqrt](241/16 + 1/24 (43781688 - 5208 Sqrt[56298])^(1/3) + (1824237 + 217 Sqrt[56298])^(1/3)/(4 3^(2/3))))))))/(128 \[Sqrt](241/16 + 1/24 (43781688 - 5208 Sqrt[56298])^(1/3) + (1824237 + 217 Sqrt[56298])^(1/3)/(4 3^(2/3)))) - 9999/16 Sqrt[241/16 + 1/24 (43781688 - 5208 Sqrt[56298])^(1/3) + (1824237 + 217 Sqrt[56298])^(1/3)/(4 3^(2/3))] \[Sqrt](35/8 - 1/2 \[Sqrt](241/16 + 1/24 (43781688 - 5208 Sqrt[56298])^(1/3) + (1824237 + 217 Sqrt[56298])^(1/3)/(4 3^(2/3))) - 1/8 \[Sqrt](1/6 (2892 - 4 (43781688 - 5208 Sqrt[56298])^(1/3) - 8 (3 (1824237 + 217 Sqrt[56298]))^(1/3) - 573/(\[Sqrt](241/16 + 1/24 (43781688 - 5208 Sqrt[56298])^(1/3) + (1824237 + 217 Sqrt[56298])^(1/3)/(4 3^(2/3))))))) - 1/8 (43781688 - 5208 Sqrt[56298])^(1/3) Sqrt[241/16 + 1/24 (43781688 - 5208 Sqrt[56298])^(1/3) + (1824237 + 217 Sqrt[56298])^(1/3)/(4 3^(2/3))] \[Sqrt](35/8 - 1/2 \[Sqrt](241/16 + 1/24 (43781688 - 5208 Sqrt[56298])^(1/3) + (1824237 + 217 Sqrt[56298])^(1/3)/(4 3^(2/3))) - 1/8 \[Sqrt](1/6 (2892 - 4 (43781688 - 5208 Sqrt[56298])^(1/3) - 8 (3 (1824237 + 217 Sqrt[56298]))^(1/3) - 573/(\[Sqrt](241/16 + 1/24 (43781688 - 5208 Sqrt[56298])^(1/3) + (1824237 + 217 Sqrt[56298])^(1/3)/(4 3^(2/3))))))) - 1/4 (3 (1824237 + 217 Sqrt[56298]))^(1/3) Sqrt[241/16 + 1/24 (43781688 - 5208 Sqrt[56298])^(1/3) + (1824237 + 217 Sqrt[56298])^(1/3)/(4 3^(2/3))] \[Sqrt](35/8 - 1/2 \[Sqrt](241/16 + 1/24 (43781688 - 5208 Sqrt[56298])^(1/3) + (1824237 + 217 Sqrt[56298])^(1/3)/(4 3^(2/3))) - 1/8 \[Sqrt](1/6 (2892 - 4 (43781688 - 5208 Sqrt[56298])^(1/3) - 8 (3 (1824237 + 217 Sqrt[56298]))^(1/3) - 573/(\[Sqrt](241/16 + 1/24 (43781688 - 5208 Sqrt[56298])^(1/3) + (1824237 + 217 Sqrt[56298])^(1/3)/(4 3^(2/3))))))) + (241/16 + 1/24 (43781688 - 5208 Sqrt[56298])^(1/3) + (1824237 + 217 Sqrt[56298])^(1/3)/(4 3^(2/3)))^(3/2) \[Sqrt](35/8 - 1/2 \[Sqrt](241/16 + 1/24 (43781688 - 5208 Sqrt[56298])^( 1/3) + (1824237 + 217 Sqrt[56298])^(1/3)/(4 3^(2/3))) - 1/8 \[Sqrt](1/6 (2892 - 4 (43781688 - 5208 Sqrt[56298])^(1/3) - 8 (3 (1824237 + 217 Sqrt[56298]))^(1/3) - 573/(\[Sqrt](241/16 + 1/24 (43781688 - 5208 Sqrt[56298])^(1/3) + (1824237 + 217 Sqrt[56298])^(1/3)/(4 3^(2/3))))))) + (1/(32 Sqrt[6]))(43781688 - 5208 Sqrt[56298])^(1/3) \[Sqrt](2892 - 4 (43781688 - 5208 Sqrt[56298])^(1/3) - 8 (3 (1824237 + 217 Sqrt[56298]))^(1/3) - 573/Sqrt[241/16 + 1/24 (43781688 - 5208 Sqrt[56298])^(1/3) + (1824237 + 217 Sqrt[56298])^(1/3)/(4 3^(2/3))]) \[Sqrt](35/8 - 1/2 \[Sqrt](241/16 + 1/24 (43781688 - 5208 Sqrt[56298])^(1/3) + (1824237 + 217 Sqrt[56298])^(1/3)/(4 3^(2/3))) - 1/8 \[Sqrt](1/6 (2892 - 4 (43781688 - 5208 Sqrt[56298])^(1/3) - 8 (3 (1824237 + 217 Sqrt[56298]))^(1/3) - 573/(\[Sqrt](241/16 + 1/24 (43781688 - 5208 Sqrt[56298])^(1/3) + (1824237 + 217 Sqrt[56298])^(1/3)/(4 3^(2/3))))))) + (1/(16 Sqrt[2] 3^(1/6)))(1824237 + 217 Sqrt[56298])^(1/3) \[Sqrt](2892 - 4 (43781688 - 5208 Sqrt[56298])^(1/3) - 8 (3 (1824237 + 217 Sqrt[56298]))^(1/3) - 573/Sqrt[241/16 + 1/24 (43781688 - 5208 Sqrt[56298])^(1/3) + (1824237 + 217 Sqrt[56298])^(1/3)/(4 3^(2/3))]) \[Sqrt](35/8 - 1/2 \[Sqrt](241/16 + 1/24 (43781688 - 5208 Sqrt[56298])^( 1/3) + (1824237 + 217 Sqrt[56298])^(1/3)/(4 3^(2/3))) - 1/8 \[Sqrt](1/6 (2892 - 4 (43781688 - 5208 Sqrt[56298])^(1/3) - 8 (3 (1824237 + 217 Sqrt[56298]))^(1/3) - 573/(\[Sqrt](241/16 + 1/24 (43781688 - 5208 Sqrt[56298])^( 1/3) + (1824237 + 217 Sqrt[56298])^(1/3)/(4 3^(2/3))))))) - 43 \[Sqrt](2/3 (241/16 + 1/24 (43781688 - 5208 Sqrt[56298])^(1/3) + (1824237 + 217 Sqrt[56298])^(1/3)/(4 3^(2/3)))) \[Sqrt](2892 - 4 (43781688 - 5208 Sqrt[56298])^(1/3) - 8 (3 (1824237 + 217 Sqrt[56298]))^(1/3) - 573/Sqrt[241/16 + 1/24 (43781688 - 5208 Sqrt[56298])^(1/3) + (1824237 + 217 Sqrt[56298])^(1/3)/(4 3^(2/3))]) \[Sqrt](35/8 - 1/2 \[Sqrt](241/16 + 1/24 (43781688 - 5208 Sqrt[56298])^(1/3) + (1824237 + 217 Sqrt[56298])^(1/3)/(4 3^(2/3))) - 1/8 \[Sqrt](1/6 (2892 - 4 (43781688 - 5208 Sqrt[56298])^(1/3) - 8 (3 (1824237 + 217 Sqrt[56298]))^(1/3) - 573/(\[Sqrt](241/16 + 1/24 (43781688 - 5208 Sqrt[56298])^( 1/3) + (1824237 + 217 Sqrt[56298])^(1/3)/(4 3^(2/3))))))) - 35/8 \[Sqrt](3/2 (241/16 + 1/24 (43781688 - 5208 Sqrt[56298])^( 1/3) + (1824237 + 217 Sqrt[56298])^(1/3)/( 4 3^(2/3)))) \[Sqrt](2892 - 4 (43781688 - 5208 Sqrt[56298])^(1/3) - 8 (3 (1824237 + 217 Sqrt[56298]))^(1/3) - 573/Sqrt[241/16 + 1/24 (43781688 - 5208 Sqrt[56298])^(1/3) + (1824237 + 217 Sqrt[56298])^(1/3)/(4 3^(2/3))]) \[Sqrt](35/8 - 1/2 \[Sqrt](241/16 + 1/24 (43781688 - 5208 Sqrt[56298])^(1/3) + (1824237 + 217 Sqrt[56298])^(1/3)/(4 3^(2/3))) - 1/8 \[Sqrt](1/6 (2892 - 4 (43781688 - 5208 Sqrt[56298])^(1/3) - 8 (3 (1824237 + 217 Sqrt[56298]))^(1/3) - 573/(\[Sqrt](241/16 + 1/24 (43781688 - 5208 Sqrt[56298])^(1/3) + (1824237 + 217 Sqrt[56298])^(1/3)/( 1787/32 \[Sqrt](3/2 (2892 - 4 (43781688 - 5208 Sqrt[56298])^(1/3) - 8 (3 (1824237 + 217 Sqrt[56298]))^(1/3) - 573/Sqrt[241/16 + 1/24 (43781688 - 5208 Sqrt[56298])^(1/3) + (1824237 + 217 Sqrt[56298])^(1/3)/(4 3^(2/3))])) \[Sqrt](35/8 - 1/2 \[Sqrt](241/16 + 1/24 (43781688 - 5208 Sqrt[56298])^(1/3) + (1824237 + 217 Sqrt[56298])^(1/3)/(4 3^(2/3))) - 1/8 \[Sqrt](1/6 (2892 - 4 (43781688 - 5208 Sqrt[56298])^(1/3) - 8 (3 (1824237 + 217 Sqrt[56298]))^(1/3) - 573/(\[Sqrt](241/16 + 1/24 (43781688 - 5208 Sqrt[56298])^(1/3) + (1824237 + 217 Sqrt[56298])^(1/3)/(4 3^(2/3))))))))
下面给出方程组的全部数值解,上面的精确解对应下面的第一个数值解.前4组是实解,后四组是复
{m=0.0216395,n=-3.00957,p=-2.65803},
{m=-0.0216395,n=3.00957,p=2.65803},
{m=-3.04648,n=0.443303,p=-2.88973},
{m=3.04648,n=-0.443303,p=2.88973},
{m=-2.31541-0.0433529 i,n=-2.57372-0.0322286i,p=-1.02491+0.0908378i},
{m=-2.31541+0.0433529i,n=-2.57372+0.0322286i,p=-1.02491-0.0908378i},
{m=2.31541-0.0433529i,n=2.57372-0.0322286i,p=1.02491+0.0908378i},
{m=2.31541+0.0433529i,n=2.57372+0.0322286i,p=1.02491-0.0908378i}
补充:
把原方程组中的m,n消去以后,得到关于p的八次方程
-1122 p^2 + 738 p^4 - 140 p^6 + 8 p^8 == -529,
把p^2看成变量,上面的方程就变成了四次方程,数学上是可以求解四次方程的解析解,即精确解.求解可得关于p^2的四个解(写成数值形式)
{p^2=1.04218-0.186201i},
{p^2=1.04218+0.186201i},
{p^2=7.06513},
{p^2=8.35051}
再由原方程组中的第一个方程mn+p^2=7,因为要求m,n,p都是正实数,所以p^2就要小于7,而上面关于p^2的四个数值解都不符合要求,所以原方程组没有正实数解.
从上面的推导过程还可以看出,原方程组只有上面已经列出的8组解
Solve[{m*n + p^2 == 7, n*p + m^2 == 8, p*m + n^2 == 9}, {m, n, p}]
与数值解命令
NSolve[{m*n + p^2 == 7, n*p + m^2 == 8, p*m + n^2 == 9}, {m, n, p}]
解答,都显示这个方程组有4组实解和4组复解
4组实解中没有找到正实数解
由于精确解的表达式很麻烦(所给形式已经经过化简).我只给出第一个精确解的m值.从精确解的形式可以看出,想找到具体解题步骤是不太可能的:m=(1/4991)(1/384 (2892 - 4 (43781688 - 5208 Sqrt[56298])^(1/3) -8(3 (1824237 + 217 Sqrt[56298]))^(1/3) - 573/Sqrt[241/16 + 1/24 (43781688 - 5208 Sqrt[56298])^(1/3) + (1824237 + 217 Sqrt[56298])^(1/3)/(4 3^(2/3))])^(3/2) \[Sqrt](1/6 (35/8 - 1/2 \[Sqrt](241/16 + 1/24 (43781688 - 5208 Sqrt[56298])^(1/3) + (1824237 + 217 Sqrt[56298])^(1/3)/(4 3^(2/3))) -1/8 \[Sqrt](1/6 (2892 - 4 (43781688 - 5208 Sqrt[56298])^(1/3) - 8 (3 (1824237 + 217 Sqrt[56298]))^(1/3) - 573/(\[Sqrt](241/16 + 1/24 (43781688 - 5208 Sqrt[56298])^(1/3) + (1824237 + 217 Sqrt[56298])^(1/3)/( 4 3^(2/3)))))))) - 27559/4 \[Sqrt](35/8 - 1/2 \[Sqrt](241/16 + 1/24 (43781688 - 5208 Sqrt[56298])^(1/3) + (1824237 + 217 Sqrt[56298])^(1/3)/(4 3^(2/3))) - 1/8 \[Sqrt](1/ 6 (2892 - 4 (43781688 - 5208 Sqrt[56298])^(1/3) - 8 (3 (1824237 + 217 Sqrt[56298]))^(1/3) - 573/(\[Sqrt](241/16 + 1/24 (43781688 - 5208 Sqrt[56298])^(1/3) + (1824237 + 217 Sqrt[56298])^(1/3)/(4 3^(2/3))))))) + (151463 \[Sqrt](35/8 - 1/2 \[Sqrt](241/16 + 1/24 (43781688 - 5208 Sqrt[56298])^(1/3) + (1824237 + 217 Sqrt[56298])^(1/3)/(4 3^(2/3))) - 1/8 \[Sqrt](1/6 (2892 - 4 (43781688 - 5208 Sqrt[56298])^(1/3) - 8 (3 (1824237 + 217 Sqrt[56298]))^(1/3) - 573/(\[Sqrt](241/16 + 1/24 (43781688 - 5208 Sqrt[56298])^(1/3) + (1824237 + 217 Sqrt[56298])^(1/3)/(4 3^(2/3))))))))/(128 \[Sqrt](241/16 + 1/24 (43781688 - 5208 Sqrt[56298])^(1/3) + (1824237 + 217 Sqrt[56298])^(1/3)/(4 3^(2/3)))) - 9999/16 Sqrt[241/16 + 1/24 (43781688 - 5208 Sqrt[56298])^(1/3) + (1824237 + 217 Sqrt[56298])^(1/3)/(4 3^(2/3))] \[Sqrt](35/8 - 1/2 \[Sqrt](241/16 + 1/24 (43781688 - 5208 Sqrt[56298])^(1/3) + (1824237 + 217 Sqrt[56298])^(1/3)/(4 3^(2/3))) - 1/8 \[Sqrt](1/6 (2892 - 4 (43781688 - 5208 Sqrt[56298])^(1/3) - 8 (3 (1824237 + 217 Sqrt[56298]))^(1/3) - 573/(\[Sqrt](241/16 + 1/24 (43781688 - 5208 Sqrt[56298])^(1/3) + (1824237 + 217 Sqrt[56298])^(1/3)/(4 3^(2/3))))))) - 1/8 (43781688 - 5208 Sqrt[56298])^(1/3) Sqrt[241/16 + 1/24 (43781688 - 5208 Sqrt[56298])^(1/3) + (1824237 + 217 Sqrt[56298])^(1/3)/(4 3^(2/3))] \[Sqrt](35/8 - 1/2 \[Sqrt](241/16 + 1/24 (43781688 - 5208 Sqrt[56298])^(1/3) + (1824237 + 217 Sqrt[56298])^(1/3)/(4 3^(2/3))) - 1/8 \[Sqrt](1/6 (2892 - 4 (43781688 - 5208 Sqrt[56298])^(1/3) - 8 (3 (1824237 + 217 Sqrt[56298]))^(1/3) - 573/(\[Sqrt](241/16 + 1/24 (43781688 - 5208 Sqrt[56298])^(1/3) + (1824237 + 217 Sqrt[56298])^(1/3)/(4 3^(2/3))))))) - 1/4 (3 (1824237 + 217 Sqrt[56298]))^(1/3) Sqrt[241/16 + 1/24 (43781688 - 5208 Sqrt[56298])^(1/3) + (1824237 + 217 Sqrt[56298])^(1/3)/(4 3^(2/3))] \[Sqrt](35/8 - 1/2 \[Sqrt](241/16 + 1/24 (43781688 - 5208 Sqrt[56298])^(1/3) + (1824237 + 217 Sqrt[56298])^(1/3)/(4 3^(2/3))) - 1/8 \[Sqrt](1/6 (2892 - 4 (43781688 - 5208 Sqrt[56298])^(1/3) - 8 (3 (1824237 + 217 Sqrt[56298]))^(1/3) - 573/(\[Sqrt](241/16 + 1/24 (43781688 - 5208 Sqrt[56298])^(1/3) + (1824237 + 217 Sqrt[56298])^(1/3)/(4 3^(2/3))))))) + (241/16 + 1/24 (43781688 - 5208 Sqrt[56298])^(1/3) + (1824237 + 217 Sqrt[56298])^(1/3)/(4 3^(2/3)))^(3/2) \[Sqrt](35/8 - 1/2 \[Sqrt](241/16 + 1/24 (43781688 - 5208 Sqrt[56298])^( 1/3) + (1824237 + 217 Sqrt[56298])^(1/3)/(4 3^(2/3))) - 1/8 \[Sqrt](1/6 (2892 - 4 (43781688 - 5208 Sqrt[56298])^(1/3) - 8 (3 (1824237 + 217 Sqrt[56298]))^(1/3) - 573/(\[Sqrt](241/16 + 1/24 (43781688 - 5208 Sqrt[56298])^(1/3) + (1824237 + 217 Sqrt[56298])^(1/3)/(4 3^(2/3))))))) + (1/(32 Sqrt[6]))(43781688 - 5208 Sqrt[56298])^(1/3) \[Sqrt](2892 - 4 (43781688 - 5208 Sqrt[56298])^(1/3) - 8 (3 (1824237 + 217 Sqrt[56298]))^(1/3) - 573/Sqrt[241/16 + 1/24 (43781688 - 5208 Sqrt[56298])^(1/3) + (1824237 + 217 Sqrt[56298])^(1/3)/(4 3^(2/3))]) \[Sqrt](35/8 - 1/2 \[Sqrt](241/16 + 1/24 (43781688 - 5208 Sqrt[56298])^(1/3) + (1824237 + 217 Sqrt[56298])^(1/3)/(4 3^(2/3))) - 1/8 \[Sqrt](1/6 (2892 - 4 (43781688 - 5208 Sqrt[56298])^(1/3) - 8 (3 (1824237 + 217 Sqrt[56298]))^(1/3) - 573/(\[Sqrt](241/16 + 1/24 (43781688 - 5208 Sqrt[56298])^(1/3) + (1824237 + 217 Sqrt[56298])^(1/3)/(4 3^(2/3))))))) + (1/(16 Sqrt[2] 3^(1/6)))(1824237 + 217 Sqrt[56298])^(1/3) \[Sqrt](2892 - 4 (43781688 - 5208 Sqrt[56298])^(1/3) - 8 (3 (1824237 + 217 Sqrt[56298]))^(1/3) - 573/Sqrt[241/16 + 1/24 (43781688 - 5208 Sqrt[56298])^(1/3) + (1824237 + 217 Sqrt[56298])^(1/3)/(4 3^(2/3))]) \[Sqrt](35/8 - 1/2 \[Sqrt](241/16 + 1/24 (43781688 - 5208 Sqrt[56298])^( 1/3) + (1824237 + 217 Sqrt[56298])^(1/3)/(4 3^(2/3))) - 1/8 \[Sqrt](1/6 (2892 - 4 (43781688 - 5208 Sqrt[56298])^(1/3) - 8 (3 (1824237 + 217 Sqrt[56298]))^(1/3) - 573/(\[Sqrt](241/16 + 1/24 (43781688 - 5208 Sqrt[56298])^( 1/3) + (1824237 + 217 Sqrt[56298])^(1/3)/(4 3^(2/3))))))) - 43 \[Sqrt](2/3 (241/16 + 1/24 (43781688 - 5208 Sqrt[56298])^(1/3) + (1824237 + 217 Sqrt[56298])^(1/3)/(4 3^(2/3)))) \[Sqrt](2892 - 4 (43781688 - 5208 Sqrt[56298])^(1/3) - 8 (3 (1824237 + 217 Sqrt[56298]))^(1/3) - 573/Sqrt[241/16 + 1/24 (43781688 - 5208 Sqrt[56298])^(1/3) + (1824237 + 217 Sqrt[56298])^(1/3)/(4 3^(2/3))]) \[Sqrt](35/8 - 1/2 \[Sqrt](241/16 + 1/24 (43781688 - 5208 Sqrt[56298])^(1/3) + (1824237 + 217 Sqrt[56298])^(1/3)/(4 3^(2/3))) - 1/8 \[Sqrt](1/6 (2892 - 4 (43781688 - 5208 Sqrt[56298])^(1/3) - 8 (3 (1824237 + 217 Sqrt[56298]))^(1/3) - 573/(\[Sqrt](241/16 + 1/24 (43781688 - 5208 Sqrt[56298])^( 1/3) + (1824237 + 217 Sqrt[56298])^(1/3)/(4 3^(2/3))))))) - 35/8 \[Sqrt](3/2 (241/16 + 1/24 (43781688 - 5208 Sqrt[56298])^( 1/3) + (1824237 + 217 Sqrt[56298])^(1/3)/( 4 3^(2/3)))) \[Sqrt](2892 - 4 (43781688 - 5208 Sqrt[56298])^(1/3) - 8 (3 (1824237 + 217 Sqrt[56298]))^(1/3) - 573/Sqrt[241/16 + 1/24 (43781688 - 5208 Sqrt[56298])^(1/3) + (1824237 + 217 Sqrt[56298])^(1/3)/(4 3^(2/3))]) \[Sqrt](35/8 - 1/2 \[Sqrt](241/16 + 1/24 (43781688 - 5208 Sqrt[56298])^(1/3) + (1824237 + 217 Sqrt[56298])^(1/3)/(4 3^(2/3))) - 1/8 \[Sqrt](1/6 (2892 - 4 (43781688 - 5208 Sqrt[56298])^(1/3) - 8 (3 (1824237 + 217 Sqrt[56298]))^(1/3) - 573/(\[Sqrt](241/16 + 1/24 (43781688 - 5208 Sqrt[56298])^(1/3) + (1824237 + 217 Sqrt[56298])^(1/3)/( 1787/32 \[Sqrt](3/2 (2892 - 4 (43781688 - 5208 Sqrt[56298])^(1/3) - 8 (3 (1824237 + 217 Sqrt[56298]))^(1/3) - 573/Sqrt[241/16 + 1/24 (43781688 - 5208 Sqrt[56298])^(1/3) + (1824237 + 217 Sqrt[56298])^(1/3)/(4 3^(2/3))])) \[Sqrt](35/8 - 1/2 \[Sqrt](241/16 + 1/24 (43781688 - 5208 Sqrt[56298])^(1/3) + (1824237 + 217 Sqrt[56298])^(1/3)/(4 3^(2/3))) - 1/8 \[Sqrt](1/6 (2892 - 4 (43781688 - 5208 Sqrt[56298])^(1/3) - 8 (3 (1824237 + 217 Sqrt[56298]))^(1/3) - 573/(\[Sqrt](241/16 + 1/24 (43781688 - 5208 Sqrt[56298])^(1/3) + (1824237 + 217 Sqrt[56298])^(1/3)/(4 3^(2/3))))))))
下面给出方程组的全部数值解,上面的精确解对应下面的第一个数值解.前4组是实解,后四组是复
{m=0.0216395,n=-3.00957,p=-2.65803},
{m=-0.0216395,n=3.00957,p=2.65803},
{m=-3.04648,n=0.443303,p=-2.88973},
{m=3.04648,n=-0.443303,p=2.88973},
{m=-2.31541-0.0433529 i,n=-2.57372-0.0322286i,p=-1.02491+0.0908378i},
{m=-2.31541+0.0433529i,n=-2.57372+0.0322286i,p=-1.02491-0.0908378i},
{m=2.31541-0.0433529i,n=2.57372-0.0322286i,p=1.02491+0.0908378i},
{m=2.31541+0.0433529i,n=2.57372+0.0322286i,p=1.02491-0.0908378i}
补充:
把原方程组中的m,n消去以后,得到关于p的八次方程
-1122 p^2 + 738 p^4 - 140 p^6 + 8 p^8 == -529,
把p^2看成变量,上面的方程就变成了四次方程,数学上是可以求解四次方程的解析解,即精确解.求解可得关于p^2的四个解(写成数值形式)
{p^2=1.04218-0.186201i},
{p^2=1.04218+0.186201i},
{p^2=7.06513},
{p^2=8.35051}
再由原方程组中的第一个方程mn+p^2=7,因为要求m,n,p都是正实数,所以p^2就要小于7,而上面关于p^2的四个数值解都不符合要求,所以原方程组没有正实数解.
从上面的推导过程还可以看出,原方程组只有上面已经列出的8组解
已知实数M,N,P满足条件(√(M/N))×((√MN)+2N)=5√MN ,且M=NP,求P的值.
m+n=1 mn+p+q=1 mq+np=0 pq=2 求以上方程组中m、n、p、q的值
已知m^2+2n+2p^2-2mn-2np-6p+9=0,求【(n^2)p】/m的值
已知M(-1,0),N(1,0),2向量PM·PN=MP·MN+NM·NP,求点P的轨迹方程
若实数m,n,p满足m-n=8,mn+p^2+16=0,求m+n+p的值
已知M(-2,0),N(2,0),点P满足向量 |MN|·向量|MP|+向量MN·向量NP=0,求点P的轨迹方程,
已知M(-2,0),N(2,0),P为动点,!MN!*!MP!+向量MN*向量NP=0求P轨迹方程 (!MN!,!MP!
已知正实数m,n,p,q满足pq/mn=(p+q)/(m+n)=k,求k的取值范围
已知抛物线y=x^2+2上的点M(X.,Y.)向直线2Y=X做垂线交于N,延长MN至P,使向量MN=4NP,求P的轨迹方
在正三棱锥P—ABC中,M,N分别是侧棱PB、PC上的点,若PM :MB = CN :NP=2:1,且平面AMN⊥平面P
已知两点m(-1,0)n(1,0)且点p(x,y)满足向量mp x向量mn+向量1nm x向量np=2向量pm x向量p
已知m,n.p都是整数,且|m-n|^3+|p-m|^5=1,求|p-m|+|m-n|+2|n-p|的值