作业帮 > 数学 > 作业

证等腰梯形的对角线若互相垂直,则其高与中位线相等

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/13 18:23:37
证等腰梯形的对角线若互相垂直,则其高与中位线相等
证等腰梯形的对角线若互相垂直,则其高与中位线相等
(梯形习惯上是AD‖BC,改一下字母应该没有问题吧?见新图)
已知:在梯形ABCD中,AD‖BC,AB=DC,AC⊥BD,中位线为EF,DM为高
求证:EF=DM
证:
延长BC到N,使CN=AD,连接DN
因为AD//CN,AD=CN
所以四边形ACND是平行四边形
所以AC//DN,AC=DN
因为AC⊥BD
所以DN⊥BD
因为四边形ABCD是等腰梯形
所以AC=BD
所以DN=BD
所以三角形DBN是等腰直角三角形
因为DM⊥BN
所以DM=BN/2
而EF是中位线
所以EF=(AD+BC)/2
所以BN=BC+CN=BC+AD=2EF
所以EF=DM