若用空间闭区域Ω的边界闭曲面∑(外侧)的曲面积分表示该域的体积V,则V=?
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 19:17:35
若用空间闭区域Ω的边界闭曲面∑(外侧)的曲面积分表示该域的体积V,则V=?
如题
如题
在该闭区域Ω任取一个平行于z轴,底面是dxdy的柱体,则该柱体体积为zdxdy.
不妨设该闭区域始终在一个卦限内.
则可以想象该闭区域可以分为两个部分,其中一部分表面∑1的法向量与z轴正向的夹角总是小于90°,就是这一部分表面∑1法向量总是朝上的;另外一部分表面∑2的法向量和z轴正向的夹角总是大于90°,即这一部分表面∑2法向量总是朝下的.
由第二类曲面积分的定义可知,沿整个∑对z在dxdy上积分可表示为:
∯(∑)zdxdy = ∯(∑1)zdxdy - ∯(∑2)zdxdy
第一个积分∯(∑1)zdxdy就是顶曲面为∑1的曲顶柱体的体积,而第二个积分∯(∑2)zdxdy是顶曲面为∑2的曲顶柱体的体积,且∑1在∑2正上方.
故由∑围成的闭区域Ω的体积为顶曲面为∑1的曲顶柱体体积减去顶曲面为∑2的曲顶柱体体积,就是∯(∑)zdxdy
同理可得V = ∯(∑)xdydz = ∯(∑)ydzdx = ∯(∑)zdxdy
其实还可以用高斯公式考虑:
F是矢量{P,Q,R}
∯(∑)(F·n)d∑ = ∫∫∫(Ω)(∇·F)dΩ
当∇·F = 1时,上式表示的就是Ω的体积
可构造F={0,0,z}使得∇·F = ∂P/∂x + ∂Q/∂y + ∂R/∂z = 1
则(F·n)d∑ = 0dydz + 0dzdx + zdxdy
左边就是∯(∑)zdxdy,右边是V
同理F={0,y,0}或F={x,0,0}都可以满足∇·F = 1
同样可以得到V = ∯(∑)xdydz = ∯(∑)ydzdx = ∯(∑)zdxdy
不妨设该闭区域始终在一个卦限内.
则可以想象该闭区域可以分为两个部分,其中一部分表面∑1的法向量与z轴正向的夹角总是小于90°,就是这一部分表面∑1法向量总是朝上的;另外一部分表面∑2的法向量和z轴正向的夹角总是大于90°,即这一部分表面∑2法向量总是朝下的.
由第二类曲面积分的定义可知,沿整个∑对z在dxdy上积分可表示为:
∯(∑)zdxdy = ∯(∑1)zdxdy - ∯(∑2)zdxdy
第一个积分∯(∑1)zdxdy就是顶曲面为∑1的曲顶柱体的体积,而第二个积分∯(∑2)zdxdy是顶曲面为∑2的曲顶柱体的体积,且∑1在∑2正上方.
故由∑围成的闭区域Ω的体积为顶曲面为∑1的曲顶柱体体积减去顶曲面为∑2的曲顶柱体体积,就是∯(∑)zdxdy
同理可得V = ∯(∑)xdydz = ∯(∑)ydzdx = ∯(∑)zdxdy
其实还可以用高斯公式考虑:
F是矢量{P,Q,R}
∯(∑)(F·n)d∑ = ∫∫∫(Ω)(∇·F)dΩ
当∇·F = 1时,上式表示的就是Ω的体积
可构造F={0,0,z}使得∇·F = ∂P/∂x + ∂Q/∂y + ∂R/∂z = 1
则(F·n)d∑ = 0dydz + 0dzdx + zdxdy
左边就是∯(∑)zdxdy,右边是V
同理F={0,y,0}或F={x,0,0}都可以满足∇·F = 1
同样可以得到V = ∯(∑)xdydz = ∯(∑)ydzdx = ∯(∑)zdxdy
设空间闭区域Ω由曲面z=a2-x2-y2与平面z=0所围成,Σ为Ω的表面外侧,V为Ω的体积.证明:∯Σ
求曲面积分,其中S为椭球面的外侧..
计算曲面积分∫∫x^3dydz+y^3dzdx+z^3dxdy,其中积分区域为,x^2+y^2+z^2=1的外侧.
如何画出曲面的边界?
proe中怎么用边界混合后得到的曲面 来移除该曲面某方向的材料
利用高斯公式计算曲面积分(如图),其中∑为球面x^2+y^2+z^2=a^2的外侧
∫∫(x+2y+z)dxdy+yzdydz 其中 Σ为平面x+2y+z=6与坐标面所围成区域的边界曲面的外侧
三重积分 计算闭区域Ω的体积 Ω由曲面(x^2/a^2 +y^2/b^2 +z^2/c^2)^2 =ax所围成
计算第二型曲面积分∫∫xdydz+ydzdx+zdxdy,其中S是曲面|x|+|y|+|z|=1的外侧.
求曲面∫∫(x^2+y^2)ds的积分,∑是锥面z=✔(x^2+y^2)及平面z=1所围成的区域的整个边界
带绝对值的三重积分∫∫∫ |z-x^2+y^2| dxdydz,(注意这里有绝对值)其中空间闭曲面由z=0,z=1及曲面
曲面积分里的d(x,y)/d(u,v)是啥意思?