作业帮 > 数学 > 作业

四边形ABCD是正方形(提示:正方形四边相等,四个角都是90°)

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/19 20:08:27
四边形ABCD是正方形(提示:正方形四边相等,四个角都是90°)

(1)如图1,点G是BC边上任意一点(不与点B、C重合),连接AG,作BF⊥AG于点F,DE⊥AG于点E.
求证:△ABF≌△DAE;(2)直接写出(1)中,线段EF与AF、BF的等量关系______;
(3)①如图2,若点G是CD边上任意一点(不与点C、D重合),连接AG,作BF⊥AG于点F,DE⊥AG于点E,则图中全等三角形是______,线段EF与AF、BF的等量关系是______;
②如图3,若点G是CD延长线上任意一点,连接AG,作BF⊥AG于点F,DE⊥AG于点E,线段EF与AF、BF的等量关系是______;
(4)若点G是BC延长线上任意一点,连接AG,作BF⊥AG于点F,DE⊥AG于点E,请画图、探究线段EF与AF、BF的等量关系.
四边形ABCD是正方形(提示:正方形四边相等,四个角都是90°)
(1)证明:∵四边形ABCD是正方形,
∴AB=AD,∠DAB=90°,
∴∠DAE+∠BAE=90°,
∵DE⊥AG,BF⊥AG,
∴∠AED=∠AFB=90°,
∴∠EAD+∠ADE=90°,
∴∠ADE=∠BAF,
∵在△ABF和△DAE中

∠ADE=∠BAF
∠AED=∠AFB
AB=AD,
∴△ABF≌△DAE(AAS);

(2)
线段EF与AF、BF的等量关系是EF=AF-BF,
理由是:∵由(1)知:△ABF≌△DAE,
∴BF=AE,
∴EF=AF-AE=AF-BF,
故答案为:EF=AF-BF;

(3)①△ABF≌△DAE,EF=BF-AF,
理由是:∵四边形ABCD是正方形,
∴AB=AD,∠DAB=90°,
∴∠DAE+∠BAE=90°,
∵DE⊥AG,BF⊥AG,
∴∠AED=∠AFB=90°,
∴∠EAD+∠ADE=90°,
∴∠ADE=∠BAF,
∵在△ABF和△DAE中

∠ADE=∠BAF
∠AED=∠AFB
AB=AD,
∴△ABF≌△DAE(AAS);
∴AE=BF,
∴EF=AE-AF=BF-AF,
故答案为:△ABF≌△DAE,EF=BF-AF;

②EF=AF+BF,
理由是:∵四边形ABCD是正方形,
∴AB=AD,∠DAB=90°,
∴∠DAE+∠BAF=180°-90°=90°,
∵DE⊥AG,BF⊥AG,
∴∠AED=∠AFB=90°,
∴∠EAD+∠ADE=90°,
∴∠ADE=∠BAF,
∵在△ABF和△DAE中

∠ADE=∠BAF
∠AED=∠AFB
AB=AD,
∴△ABF≌△DAE(AAS);
∴AE=BF,
∴EF=AE+AF=AF+BF,
故答案为:EF=AF+BF;
(4)
与以上证法类似:△ABF≌△DAE(AAS);
∴AE=BF,
∴EF=AE-AF=BF-AF;
即EF=BF-AF.
四边形ABCD是正方形(提示:正方形四边相等,四个角都是90°) 四边形ABCD是正方形(提示:正方形四边相等,四个角都是90°) (1)如图1,点G是BC边上任意一点(不与点 阅读探究题:如图1,四边形ABCD是正方形(正方形的四边相等,四个角都是直角),点E是边BC的中点.∠AEF=90°,且 四边相等,且四个角相等的四边形是正方形, 一个工人师傅要将一个边长为1的正方形ABCD(四个角都是直角,四边都相等)的余料,修剪成如图,四边形ABEF 正方形四边条边都相等,四个角都是90°.如图,已知正方形ABCD在直线MN的上方,BC在直线MN上,点E是直线MN上一点 正方形四边条边都相等,四个角都是90°。如图,已知正方形ABCD在直线MN的上方,BC在直线MN上,点E是直线MN上一点 一个工人师傅要将一个正方形ABCD(四个角都是直角,四边都相等,边长为a)的余料,修剪成如四边形ABEF的零件.其中CE 一个工人师傅要将一个正方形ABCD(四个角都是直角,四边都相等,边长为a)的余料,修剪成如四边形ABEF的零件.其中 C 一个工人师傅要将一个正方形ABCD(四个角都是直角,四边都相等,边长为a)的余料,修剪成如四边形的ABEF的零件.其中C 如图,在正方形ABCD中,E是CD边上的中点,AC与BE相交于点F,连接DF.(注:正方形的四边相等,四个角都是直角,每 (2013•河东区二模)如图,正方形(正方形的四边相等,四个角都是直角)ABCD中,AB=6,点E在边CD上,且CD=3