高中数学 x+y+z=1 求证(1/x+1/y+1/z)>8
已知xyz属于R+,x+y+z=1,求证x^3/(y(1-y))+y^3/(z(1-z))+z^3/(x(1-x))大于
已知x,y,z满足xyz=1,求证x^3/(x+y)+y^3/(y+z)+z^3/(z+x)大于等于3
已知x,y,z都是正数,且xyz=1,求证:x^2/(y+z)+y^2/(x+z)+z^2/(x+y)≥3/2
已知x^2+y^2+z^2=1,求证x+y+z-2xyz
已知x,y,z为非负实数,x+y+z=1,求证:
已知x+y+z=1,求证x
已知正数x.y.z满足x+y+z=1,求证:(1):(1/x-1)(1/y-1)(1/z-1)大于等于8;(2):1/x
已知x,y,z满足x/(y+z)+y/(z+x)+z/(x+y)=1,求代数式x2/(y+z)+y2/(x+z)+z2/
已知实数x,y,z满足x/(y+z)+y/(z+x)+z/(x+y)=1,求x2/(y+z)+y2/(z+x)+z2/(
{x+y+z=1;x+3y+7z=-1;z+5y+8z=-2
已知 x/(y+z)+y/(z+x)+z/(x+y)=1
x+y+z=1 求xyz/(x+y)(y+z)(z+x)的最大值