abc为正数,a+b>c 证a/(a+1)+b/(b+1)>c/(c+1)
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/19 09:03:35
abc为正数,a+b>c 证a/(a+1)+b/(b+1)>c/(c+1)
构造函数:
f(x)=x/(x+1)
则;f(x)=x/(x+1)
=[(x+1)-1]/(x+1)
=1-[1/(x+1)]
由于1/(x+1)在 (0,正无穷)上单调递减
则:-[1/(x+1)]在 (0,正无穷)上单调递增
则:
f(x)=x/(x+1)在 (0,正无穷)上单调递增
由于:a+b>c 且abc为正数
则:f(a+b)>f(c)
即:(a+b)/[(a+b)+1]>c/(c+1)
[a/(a+b)+1]+[b/(a+b)+1]>c/(c+1)
又由于:
a/(a+1)>a/[(a+b)+1]
b/(b+1)>b/[(a+b)+1]
则:
a/(a+1)+b/(b+1)>a/[(a+b)+1]+b/[(a+b)=1]
又[a/(a+b)+1]+[b/(a+b)+1]>c/(c+1)
则:a/(a+1)+b/(b+1)>c/(c+1)
f(x)=x/(x+1)
则;f(x)=x/(x+1)
=[(x+1)-1]/(x+1)
=1-[1/(x+1)]
由于1/(x+1)在 (0,正无穷)上单调递减
则:-[1/(x+1)]在 (0,正无穷)上单调递增
则:
f(x)=x/(x+1)在 (0,正无穷)上单调递增
由于:a+b>c 且abc为正数
则:f(a+b)>f(c)
即:(a+b)/[(a+b)+1]>c/(c+1)
[a/(a+b)+1]+[b/(a+b)+1]>c/(c+1)
又由于:
a/(a+1)>a/[(a+b)+1]
b/(b+1)>b/[(a+b)+1]
则:
a/(a+1)+b/(b+1)>a/[(a+b)+1]+b/[(a+b)=1]
又[a/(a+b)+1]+[b/(a+b)+1]>c/(c+1)
则:a/(a+1)+b/(b+1)>c/(c+1)
设a,b,c为正数求证:1/(a^3+b^3+abc)+1/(b^3+c^3+abc)+1/(a^3+c^3+abc)
已知abc为正数,且a+b+c=1,求证:(1-a)(1-b)(1-c)≥8abc
不等式证明设a,b,c为正数求证:1/(a^3+b^3+abc)+1/(b^3+c^3+abc)+1/(a^3+c^3+
已知正数a,b,c,abc=1,a^2/(a+2b)+b^2/(b+2c)+c^2/(c+2a)的最小值
已知abc均为正数,求证1/2a+1/2b+1/2c>1/a+b +1/b+c +1/a+c
已知abc为不等正数.求证:1/2a+1/2b+1/2c大于1/(b+c)+1/(a+c)+1/(a+b)
a,b,c为互不相等的正数,且abc=1,求证:(1/a+1/b+1/c)>根号a+根号b+根号c
已知a+b+c=1且abc都为正数.求(a+1/a)2+(b+1/b)2+(c+1/c)2的最小值
高二均值不等式,已知a,b,c都为正数,求证:(a+b+c)(1/(a+b)+1/(b+c)+1/(a+c))>=9/2
若a.b.c为有理数,且|a|/a+|b|/b+|c|/c=-1,求abc/|abc|的值
a b c为有理数 且a/|a|+b/|b|+c/|c|=-1 求abc/|abc| 的值,为什么?
若ABC为整数,且|A-B|+|C-A|=1,求|A-B|+|B-C|+|C-A|的值