(2014•石家庄一模)已知⊙O1和⊙O2相交于A,B两点,过A点作⊙O1的切线交⊙O2于点E,连接EB并延长交⊙O1于
来源:学生作业帮 编辑:神马作文网作业帮 分类:综合作业 时间:2024/11/15 20:14:19
(2014•石家庄一模)已知⊙O1和⊙O2相交于A,B两点,过A点作⊙O1的切线交⊙O2于点E,连接EB并延长交⊙O1于点C,直线CA交⊙O2于点D.
(Ⅰ)当点D与点A不重合时(如图①),证明ED2=EB•EC;
(Ⅱ)当点D与点A重合时(如图②),若BC=2,BE=6,求⊙O2的直径长.
(Ⅰ)当点D与点A不重合时(如图①),证明ED2=EB•EC;
(Ⅱ)当点D与点A重合时(如图②),若BC=2,BE=6,求⊙O2的直径长.
(Ⅰ)证明:连接AB,在EA的延长线上取点F.
∵AE是⊙O1的切线,切点为A,
∴∠FAC=∠ABC,.…(1分)
∵∠FAC=∠DAE,
∴∠ABC=∠DAE,
∵∠ABC是⊙O2内接四边形ABED的外角,
∴∠ABC=∠ADE,…(2分)
∴∠DAE=∠ADE.…(3分)
∴EA=ED,
∵EA2=EB•EC,
∴ED2=EB•EC.…(5分)
(Ⅱ)当点D与点A重合时,直线CA与⊙O2只有一个公共点,
∴直线CA与⊙O2相切.…(6分)
如图②所示,由弦切角定理知:∠PAC=∠ABC,∠MAE=∠ABE,
∵∠PAC=∠MAE,
∴∠ABC=∠ABE=90°
∴AC与AE分别为⊙O1和⊙O2的直径.…(8分)
∴由切割线定理知:EA2=BE•CE,而CB=2,BE=6,CE=8
∴EA2=6×8=48,AE=4
3.
故⊙O2的直径为4
3.…(10分)
∵AE是⊙O1的切线,切点为A,
∴∠FAC=∠ABC,.…(1分)
∵∠FAC=∠DAE,
∴∠ABC=∠DAE,
∵∠ABC是⊙O2内接四边形ABED的外角,
∴∠ABC=∠ADE,…(2分)
∴∠DAE=∠ADE.…(3分)
∴EA=ED,
∵EA2=EB•EC,
∴ED2=EB•EC.…(5分)
(Ⅱ)当点D与点A重合时,直线CA与⊙O2只有一个公共点,
∴直线CA与⊙O2相切.…(6分)
如图②所示,由弦切角定理知:∠PAC=∠ABC,∠MAE=∠ABE,
∵∠PAC=∠MAE,
∴∠ABC=∠ABE=90°
∴AC与AE分别为⊙O1和⊙O2的直径.…(8分)
∴由切割线定理知:EA2=BE•CE,而CB=2,BE=6,CE=8
∴EA2=6×8=48,AE=4
3.
故⊙O2的直径为4
3.…(10分)
(2001•武汉)已知:如图,⊙O1和⊙O2相交于A、B两点,过B点作⊙O1的切线交⊙O2于D点,连接DA并延长⊙O1相
18、(本题满分9分)如图,已知⊙O1与⊙O2相交于A、B两点,过A作⊙O1的切线交⊙O2于E,连结EB并延长交⊙O 1
如图,已知⊙O1和⊙O2相交于A,B两点,过点A作⊙O2的切线交⊙O1于点C,过点B作两圆的割线分别交⊙O1,⊙O2
如图,已知⊙O1和⊙O2相交于A,B两点,过点A作⊙O1的切线交⊙O2于点C,直线CB交⊙O1于点D,
如图,已知⊙O1和⊙O2相交于A,B两点,过点A作⊙O1的切线交⊙O2于点C,直线CB交⊙O1于点96,
如图,已知⊙O1和⊙O2相交于A,B两点,过点A作⊙O1的切线交⊙O2于点C,直线CB交⊙O1于点D,89
(2014•天津三模)如图所示,已知⊙O1与⊙O2相交于A,B两点,过点A作⊙O1的切线交⊙O2于点C,过点B作两圆的割
(2014•海南模拟)如图所示,已知⊙O1与⊙O2相交于A、B两点,过点A作⊙O1的切线交⊙O2于点C,过点B作两圆的割
如图所示,已知⊙O1与⊙O2相交于A、B两点,过点A作⊙O1的切线交⊙O2于点C,过点B作两圆的割线,分别交⊙O1、⊙O
如图已知⊙O1⊙O2相交于A、B两点,C为圆1上的一点,连接CA并延长交⊙O2于D点,连接CB并延长交⊙O2于E点,连接
如图已知⊙O1⊙O2相交于A、B两点,C为上的一点,连接CA并延长交⊙O2于D点,连接CB并延长交⊙O2于E点,连接DE
如图,已知⊙O1与⊙O2都过点A,AO1是⊙O2的切线,⊙O1交O1O2于点B,连接AB并延长交⊙O2于点C,连接O2C