作业帮 > 数学 > 作业

x*y*z=1 x+y+z=2 x^2+y^2+z^2=3 1/(xy+z-1)+1/(xz+y-1)+1/(yz+x-

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 23:54:05
x*y*z=1 x+y+z=2 x^2+y^2+z^2=3 1/(xy+z-1)+1/(xz+y-1)+1/(yz+x-1)=?
x*y*z=1 x+y+z=2 x^2+y^2+z^2=3 1/(xy+z-1)+1/(xz+y-1)+1/(yz+x-
1/(xy+z-1)=1/(xy+2-x-y-1)=1/[xy-x-(y-1)]=1/(x-1)(y-1)
同理1/(xz+y-1)=1/(x-1)(z-1), 1/(yz+x-1)=1/(y-1)(z-1)
1/(x-1)(y-1)+1/(x-1)(z-1)=[(z-1)+(y-1)]/(x-1)(y-1)(z-1)
=(y+z-2)/(x-1)(y-1)(z-1)=-x/(x-1)(y-1)(z-1)
-x/(x-1)(y-1)(z-1)+1/(y-1)(z-1)=(-x+x-1)/(x-1)(y-1)(z-1)=-1/(x-1)(y-1)(z-1)
(x-1)(y-1)(z-1)=xyz-xz-zy+z-xy+y+z-1=1+2-1-(xz+zy+xy)
(xz+zy+xy)=[(x+y+z)^2-(x^2+y^2+z^2)]/2=1/2
(x-1)(y-1)(z-1)=3/2
1/(xy+z-1)+1/(xz+y-1)+1/(yz+x-1)=-1/(x-1)(y-1)(z-1)=-2/3