求曲面积分∫∫zdS,其中为平面x+y+z=1在第一卦限的部分
计算对面积的曲面积分zds 圆柱面x^2+y^2=1介于平面z=0 和z=3之间的部分
求曲面积分zdS,Σ是圆柱面x^2+y^2=1,平面z=0和z=1+x所围立体的表面
曲面积分设为平面x/4+y/3+z/2=1在第一卦线的部分,则∫∫(1/2x+2/3y+z)dS=
计算∫∫(z+2x+4\3y)ds,其中∑为平面x\2+y\3+z\4=1在第一卦限中的部分.
求平面x+y=1上被坐标面与曲面z=xy截下的在第一卦限部分的面积
高数题设曲面∑为柱面x^2+y^2=1介于平面z=-2与z=2之间的部分,则曲面积分∫∫(∑)(x^2+yz+y^2)d
计算曲面积分∫∫xzdydz+y^2dxdy,其中积分面是球面x^2+y^2+z^2=a^2第一卦限部分的下侧.
计算曲面积分如图其中曲面是柱面x^2+y^2=1被平面z=0和z=3所截得的在x》=0的部分,取外侧
计算曲面积分I=∫∫(x+2y+z)ds其中区域:球面x^2+y^2+z^2=a^2在第一挂限部分
计算曲面积分∫∫x^3dydz+y^3dzdx+z^3dxdy,其中积分区域为,x^2+y^2+z^2=1的外侧.
计算曲面积分∫∫∑ z^2 dS其中 ∑为柱面x^2+y^2=4 介于0≤z≤6的部分
计算三重积分 ∫∫∫(x^2+y^2+z)dxdydz 其中D为曲面z=1-x^2-y^2与xOy平面所围成的区域.