作业帮 > 数学 > 作业

若函数f(x,y)在矩形区域D:0

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 22:46:37
若函数f(x,y)在矩形区域D:0<=x<=1,0<=y<=1上连续,且xy(∫∫f(x,y)dxdy)^2=f(x,y)-1,则f(x,y)=( )
若函数f(x,y)在矩形区域D:0
note that ∫∫f(x,y)dxdy is a constant,let it be c,then
xy*c^2=f(x,y)-1
f(x,y)=xy*c^2+1,
take the integral,we get
∫∫f(x,y)dxdy=(c^2)/4+1
but as assumed,it equals c.
solve:
(c^2)/4+1=c we get c=2
thus,f(x,y)=4xy+1.