∫∫z^2ds,其中∑是上半球面z=√1-x^2-y^2被平面z=1/2截取的顶部
计算曲面积分 ∫∫(x^2+y^2)ds,其中 ∑是上半球面z=根号(4-x^2-y^2)
求下列第一型曲线积分 ∫L√(2y^2+z^2)ds,其中L为球面x^2+y^2+z^2=a^2与平面x=y的交线.
计算∫∫(z+2x+4\3y)ds,其中∑为平面x\2+y\3+z\4=1在第一卦限中的部分.
设球面∑:x^2+y^2+z^2=1,则曲面积分∫∫(x+y+z+1)^2dS=
计算曲面积分∫∫1/(x^2+y^2+z^2)ds,其中S是介于平面z=0及z=H之间的圆柱面x^2+y^2=R^2.(
设∑是球面x^2+y^2+z^2=4,则曲面积分∮∫(x^2+y^2+z^2)dS=
计算曲面积分∫∫(x^2)dS,其中S为上球面z=根号(1-x^2-y^2),x^2+y^2
计算I=∫∫(x^2+y^2+z^2)ds,其中Σ为球面x^2+y^2+z^2=2az(a>0)
设F是球面x^2+y^2+z^2 = 1与平面x+y+z=0的交线,则∮(2x+3y^2)ds = 求具体解题步骤,快要
计算∫∫∑(x^2+y^2)dS其中∑为锥面z=√(x^2+y^2)及平面z=1围成的整个边界曲面
求线积分求∫τ√(2y^2+x^2)ds,其中τ为球面x^2+y^2+z^2=a^2与平面x=y的交线
计算曲面积分∫∫x^3dydz+y^3dzdx+z^3dxdy,∑是上半球面z=根下1-x^2-y^2的上侧