作业帮 > 数学 > 作业

设数列{an},Sn,a1=1,Sn=an+1-1,设bn=2^n/(an+1)(an+1+1),Tn=b1+b2+…+

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/17 12:36:47
设数列{an},Sn,a1=1,Sn=an+1-1,设bn=2^n/(an+1)(an+1+1),Tn=b1+b2+…+bn,求证:1/3小于等于Tn小于1
设数列{an},Sn,a1=1,Sn=an+1-1,设bn=2^n/(an+1)(an+1+1),Tn=b1+b2+…+
Sn=a(n+1)-1
S(n-1)=an-1
an=Sn-S(n-1)=a(n+1)-an
a(n+1)=2an
故{an}是公比为2的等比数列
an=a1*2^(n-1)=2^(n-1)
a(n+1)=2^n
bn=2^n/[a(n+1)][a(n+1)+1]=1/(2^n+1)
因bn
再问: bn=2^n/[(an)+1][a(n+1)+1]
再答: bn=2^n/[(an)+1][a(n+1)+1] =2^n/[2^(n-1)+1][2^n+1] =2{1/[2^(n-1)+1]-1/(2^n+1)} Tn=2{(1/2-1/3)+(1/3-1/4)+...+1/[2^(n-1)+1]-1/(2^n+1)} =2[1/2-1/(2^n+1)] =1-2/(2^n+1) 可见Tn