设2000X^3=2001Y^3=2002Z^3,XYZ>0 且2000X^3+2001Y^3+2002Z^3的和的立方
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/18 11:57:30
设2000X^3=2001Y^3=2002Z^3,XYZ>0 且2000X^3+2001Y^3+2002Z^3的和的立方根=2000的立方根+2001的立方根+2
设2000X^3=2001Y^3=2002Z^3,XYZ>0 且2000X^3+2001Y^3+2002Z^3的和的立方根=2000的立方根+2001的立方根+2002的立方根.求X分之一+Y分之一+Z分之一的值.
设2000X^3=2001Y^3=2002Z^3,XYZ>0 且2000X^3+2001Y^3+2002Z^3的和的立方根=2000的立方根+2001的立方根+2002的立方根.求X分之一+Y分之一+Z分之一的值.
令2000x^3=2001y^3=2002z^3=N,题中方程立方得
2000x^2+2001y^2+2000z^2=(3次√2000+3次√2001+3次√2002)^3
两边同除以N
左边:(2000x^2+2001y^2+2000z^2)/N=2000x^2/N+2001y^2/N+2000z^2/N
=2000x^2/2000x^3+2001y^2/2001y^3+2000z^2/2002z^3
=1/x+1/y+1/z
右边:(3次√2000+3次√2001+3次√2002)^3/N
=[(3次√2000/3次√N)+(3次√2001/3次√N)+(3次√2002/3次√N)]^3
=[(3次√2000/3次√2000x^3)+(3次√2001/3次√2001y^3)+(3次√2002/3次√2002z^3)]
=(1/x+1/y+1/z)^3
即是 1/x+1/y+1/z=(1/x+1/y+1/z)^3
化简 (1/x+1/y+1/z)^2=1
因为 2000x^3=2001y^3=2002z^3且xyz大于0
所以 x>0,y>0,z>0
所以 1/x+1/y+1/z=1
2000x^2+2001y^2+2000z^2=(3次√2000+3次√2001+3次√2002)^3
两边同除以N
左边:(2000x^2+2001y^2+2000z^2)/N=2000x^2/N+2001y^2/N+2000z^2/N
=2000x^2/2000x^3+2001y^2/2001y^3+2000z^2/2002z^3
=1/x+1/y+1/z
右边:(3次√2000+3次√2001+3次√2002)^3/N
=[(3次√2000/3次√N)+(3次√2001/3次√N)+(3次√2002/3次√N)]^3
=[(3次√2000/3次√2000x^3)+(3次√2001/3次√2001y^3)+(3次√2002/3次√2002z^3)]
=(1/x+1/y+1/z)^3
即是 1/x+1/y+1/z=(1/x+1/y+1/z)^3
化简 (1/x+1/y+1/z)^2=1
因为 2000x^3=2001y^3=2002z^3且xyz大于0
所以 x>0,y>0,z>0
所以 1/x+1/y+1/z=1
设X+Y+Z=0求X^3+X^2Z-XYZ+Y^2Z+Y^3的值
设 1996x^3=1997y^3=1998z^3,xyz>0,(1996x^2+1997y^2+1998z^2)的立方
设2000乘x的3次方=2001乘y的3次方=2002乘z的3次方,xyz>0,且(2000乘x的平方+2001乘y的平
已知4x-3y+z=0,x+2y-8z=0,xyz不等于0,求x+y-z/x-y+2z的值
已知方程组4x-y+3z=0 2x+y+6z=0且xyz不等于0,则x/y+y/z+z/x是多少
代数式的恒等变形3已知(x+y+-z)/z=(x-y+z)/y=(-x+y+z)/x且xyz不等于0求分式(x+y)(y
已知X,Y,Z为3个互不相等的实数,且X+1/Y=Y+1/Z=Z+1/Z求证(xyz)^2=1
已知x,y,z属于R+(正实数),且xyz(x+y+z)=4+2*根号下3,则(x+y)(y+z)的最小值是?
初二数学寒假作业题设2000x的3次方=2001y的3次方=2002z的3次方,xyz>0,且(2000x的平方+200
x:y:z=2:3:4且x+y+z=18求xyz
xyz∈R+且 x+2y+3z=36求 1/x +2/y +3/z的最小值
已知X,Y,Z属于R+ ,且X+2Y+3Z=3,则XYZ的最大值