作业帮 > 综合 > 作业

(2013•燕山区一模)如图,点P是⊙O的弦AB上任一点(与A,B均不重合),点C在⊙O上,PC⊥OP,已知AB=8,设

来源:学生作业帮 编辑:神马作文网作业帮 分类:综合作业 时间:2024/11/18 14:18:11
(2013•燕山区一模)如图,点P是⊙O的弦AB上任一点(与A,B均不重合),点C在⊙O上,PC⊥OP,已知AB=8,设BP=x,PC2=y,y与x之间的函数图象大致是(  )

A.
B.
C.
D.
(2013•燕山区一模)如图,点P是⊙O的弦AB上任一点(与A,B均不重合),点C在⊙O上,PC⊥OP,已知AB=8,设
延长CP交⊙O于点D,
∵PC⊥OP,
∴PC=PD,
∵PC•PD=PA•PB,
∴PC2=PA•PB,
∵AB=8,BP=x,PC2=y,
∴AP=8-x,
则y=x(8-x)=-x2+8x=-(x-4)2+16.
故该函数图象为开口向下的抛物线,且顶点为(4,16).
故选A.
如图圆O的半径为1,点P是圆O上一点,弦AB垂直平分线段OP,点D是弧APB上任一点(与端点A B不重合),DE⊥AB于 圆综合证明题如图,圆O的半径为1,点P是圆O上一点,弦AB垂直平分OP,点D是APB上任一点(与端点A,B不重合),DE 如图,⊙P与⊙O相交于A、B两点,⊙P经过圆心O,点C是⊙P的优弧AB上任意一点(不与点A、B重合),连接AB、AC、B 如图,等边△ABC内接于⊙O,P是弧AB上任一点(点P不与A、B重合),连AP,BP,过C作CM∥BP交PA的延长线于点 如图:在圆O中,P是弦AB上一点,OP⊥PC,PC交圆O于点C,求证:PC^2=PA×PB 如图,AB是圆心O的直径,点C在圆心O上运动(与点A,B不重合),弦CD丄AB,CP平分角OCD交圆心O于点P,当点C运 如图,⊙P与⊙O相交于A、B两点,⊙P经过圆心O,点C是⊙P的优弧上AB任意一点(不与点A、B重合),连接AB、AC、B 直线AB经过⊙O的圆心O,与之相交与A、B,点C在⊙O,且∠AOC=30度,点P是AB上一动点(与点O不重合),直线CP 已知:圆O的半径OA=5,弦AB=8,C是弦AB的中点,点P是射线AO上一点(与点A不重合),直线PC与射线BO交于点D (几何证明选讲)已知AB是圆O的一条弦,点P为AB上一点,PC⊥OP,PC交点O于点C,若AP=6,PB=3,则PC的长 (2012•阜宁县三模)如图,AB是半圆O的直径,点C是⊙O上一点(不与A,B重合),连接AC,BC,过点O作OD∥AC AB是⊙O的直径,点C在⊙O上运动(与A,B不重合),弦CD⊥AB,CP平分∠OCD交⊙O于点P求证弧AP=弧BP(在线