作业帮 > 数学 > 作业

设函数f x=e∧x-k/2x∧2-x 1 若k=0 求fx的最小值 2 若当x≥0

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/19 07:02:46
设函数f x=e∧x-k/2x∧2-x 1 若k=0 求fx的最小值 2 若当x≥0
设函数f x=e∧x-k/2x∧2-x
1 若k=0 求fx的最小值
2 若当x≥0时fx≥1求实数k的取值范围
设函数f x=e∧x-k/2x∧2-x 1 若k=0 求fx的最小值 2 若当x≥0
(1)函数f(x) = ex– (k/2)x2 – x,当k = 0时,f(x) = ex – x,求导可得f ’(x) = ex– 1 ;
1)当x < 0时,ex< e0 = 1,所以f ’(x) = ex – 1 < 0,此时f(x)单调递减,计算f(0) = e0– 0 = 1 (函数f(x)在x∈(-∞,0]上从+∞单调递减到0);
2)当x > 0时,ex> e0 = 1,所以f ’(x) = ex – 1 > 0,此时f(x)单调递增(函数f(x)在x∈[0,+∞)上从0单调递增到+∞);
综上所述,k = 0时,当且仅当x = 0时,f(x)的最小值是1 .
(2)令F(X)=e^x-(k/2)x^2-x -1,则F'(X)=e^x-kx-1,
当k-=1时,曲线y=e^x 与直线 y=kx+1切于点(0,1),
故k≤1.
(当x≥0时,F'(X)=e^x-kx-1≥0)