傅里叶变换和傅里叶展开是不是同一个概念?
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 19:48:38
傅里叶变换和傅里叶展开是不是同一个概念?
傅立叶变换能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合.在不同的研究领域,傅立叶变换具有多种不同的变体形式,如连续傅立叶变换和离散傅立叶变换.最初傅立叶分析是作为热过程的解析分析的工具被提出的.
傅里叶原理表明:任何连续测量的时序或信号,都可以表示为不同频率的正弦波信号的无限叠加.而根据该原理创立的傅里叶变换算法利用直接测量到的原始信号,以累加方式来计算该信号中不同正弦波信号的频率、振幅和相位.
和傅里叶变换算法对应的是反傅里叶变换算法.该反变换从本质上说也是一种累加处理,这样就可以将单独改变的正弦波信号转换成一个信号.因此,可以说,傅里叶变换将原来难以处理的时域信号转换成了易于分析的频域信号(信号的频谱),可以利用一些工具对这些频域信号进行处理、加工.最后还可以利用傅里叶反变换将这些频域信号转换成时域信号.
傅里叶展开只是傅立叶变换在数学应用中的一种方法.
傅里叶原理表明:任何连续测量的时序或信号,都可以表示为不同频率的正弦波信号的无限叠加.而根据该原理创立的傅里叶变换算法利用直接测量到的原始信号,以累加方式来计算该信号中不同正弦波信号的频率、振幅和相位.
和傅里叶变换算法对应的是反傅里叶变换算法.该反变换从本质上说也是一种累加处理,这样就可以将单独改变的正弦波信号转换成一个信号.因此,可以说,傅里叶变换将原来难以处理的时域信号转换成了易于分析的频域信号(信号的频谱),可以利用一些工具对这些频域信号进行处理、加工.最后还可以利用傅里叶反变换将这些频域信号转换成时域信号.
傅里叶展开只是傅立叶变换在数学应用中的一种方法.