已知直线y=x+m与椭圆x^2/4+y^2/8=1相交于两点A,B,且|AB|等于椭圆的焦距,求实数m
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/18 04:06:34
已知直线y=x+m与椭圆x^2/4+y^2/8=1相交于两点A,B,且|AB|等于椭圆的焦距,求实数m
椭圆的焦距=4.
联立直线与椭圆方程得:3x^2+2mx+m^2-8=0,xA+xB=-2m/3,xAxB=(m^2-8)/3.
|AB|=√2√[(xA+xB)^2-4xAxB]=√2√[4m^2/9-(4m^2-32)/3]=4,m^2=3,m=-√3或m=√3.
再问: 3x^2+2mx+m^2-8=0 xA+xB=-2m/3,xAxB=(m^2-8)/3。 你好,这些是怎么求出来的,可以详细点吗?谢谢~
再答: x^2/4+y^2/8=1,两边乘8得:2x^2+y^2=8,2x^2+y^2-8=0 y=x+m,2x^2+(x+m)^2-8=0,2x^2+x^2+2mx+m^2-8=0,3x^3+2mx+m^2-8=0 设A(xA,yA)、B(xB,yB)。根据违达定理:xA+xB=-2m/3,xAxB=(m^2-8)/3
联立直线与椭圆方程得:3x^2+2mx+m^2-8=0,xA+xB=-2m/3,xAxB=(m^2-8)/3.
|AB|=√2√[(xA+xB)^2-4xAxB]=√2√[4m^2/9-(4m^2-32)/3]=4,m^2=3,m=-√3或m=√3.
再问: 3x^2+2mx+m^2-8=0 xA+xB=-2m/3,xAxB=(m^2-8)/3。 你好,这些是怎么求出来的,可以详细点吗?谢谢~
再答: x^2/4+y^2/8=1,两边乘8得:2x^2+y^2=8,2x^2+y^2-8=0 y=x+m,2x^2+(x+m)^2-8=0,2x^2+x^2+2mx+m^2-8=0,3x^3+2mx+m^2-8=0 设A(xA,yA)、B(xB,yB)。根据违达定理:xA+xB=-2m/3,xAxB=(m^2-8)/3
直线x-y+m=0与椭圆x^2+4y^2=4相交于A,B两点,求|AB|的最大值,3道椭圆的~
已知椭圆C:X^2/4+Y^2/3=1,若直线l:y=kx+m与椭圆C相交于A,B两点(A,B不是左右顶点),且以AB为
已知直线L过点M:(1,1),且与椭圆X^2/4+Y^2/3=1相交于的A,B两点.若AB的中点为M,求直线L的方程.
椭圆与直线弦长的问题直线Y=x+m和椭圆x^2/4+y^2=1相交于A、B两点,当m变化时:(1)求 AB绝对值 的最大
椭圆C方程为(x^2)/8 +(Y^2)/4=1,若直线y=x+m与椭圆C交于不同的两点A,B,且线段AB的中点M在圆X
已知直线x+y-1=0与椭圆x^2/a^2+y^2/b^2=1(a>b>0)相交于AB两点,线段AB的中点M在直线L:Y
椭圆C方程为(x^2)/8 +(Y^2)/4=1,若直线y=x+m与椭圆C交于不同的两点A,B,且线段AB的中点M关于直
已知直线y=x+m与椭圆x^2\4+y^2=1相交于AB两点,当m为何值时,|AB|有最大值
已知椭圆C:x^2/8+y^2=1,左焦点F(-2,0),若直线y=x+m与椭圆C交于不同的两点A,B,且线段AB的中点
椭圆C方程为(x^2)/4 +(Y^2)/2=1,若直线y=x+m与椭圆C交于不同的两点A,B,且线段AB的中点M在圆X
已知椭圆mx^2+ny^2=1与直线x+y=1相交于A,B两点,M是线段AB的中点,且/AB/=二倍根号二,OM的斜率为
已知椭圆C:x^2/4+y^2=1,设直线l:y=x/2+m与椭圆交于A B两点,线段AB的垂直平分线交X轴与点T,当m