若直线l:y=kx+√2与双曲线C:三分之x2-y2=1恒有两个不同的交点A和B,且向量0A.向量0B>2(其中0为原点
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/13 12:22:33
若直线l:y=kx+√2与双曲线C:三分之x2-y2=1恒有两个不同的交点A和B,且向量0A.向量0B>2(其中0为原点).求k的取值范围
将y=kx √2代入x^2/3-y^2=1,得
(1-3k^2)x^2-6√2kx-9=0(1-3k^≠0),
其判别式Δ=(-6√2k)^2-4(1-3k^2)(-9)>0,
∴k^2<1,k≠±√3/3
设A(x1,y1),B(x2,y2),则
x1 x2=6√2k/(1-3k^2),x1x2=-9/(1-3k^2),
∴y1y2=(kx1 √2)(kx2 √2)
=k^2(x1x2) √2k(x1 x2) 2
=k^2[-9/(1-3k^2)] √2k*6√2k/(1-3k^2) 2
=(2-3k^2)/(1 3k^2).
条件OA*OB2,得x1x2 y1y22,
即有:-9/(1-3k^2) (2-3k^2)/(1-3k^2)>2.
整理得:1/3<k^2<3.③
由②③得:1/3<k^2<1.
∴-1<k<-√3/3,或√3/3<k<1.
(1-3k^2)x^2-6√2kx-9=0(1-3k^≠0),
其判别式Δ=(-6√2k)^2-4(1-3k^2)(-9)>0,
∴k^2<1,k≠±√3/3
设A(x1,y1),B(x2,y2),则
x1 x2=6√2k/(1-3k^2),x1x2=-9/(1-3k^2),
∴y1y2=(kx1 √2)(kx2 √2)
=k^2(x1x2) √2k(x1 x2) 2
=k^2[-9/(1-3k^2)] √2k*6√2k/(1-3k^2) 2
=(2-3k^2)/(1 3k^2).
条件OA*OB2,得x1x2 y1y22,
即有:-9/(1-3k^2) (2-3k^2)/(1-3k^2)>2.
整理得:1/3<k^2<3.③
由②③得:1/3<k^2<1.
∴-1<k<-√3/3,或√3/3<k<1.
对于双曲线的一支C:y=根号下x2-2x+2和直线l:y=kx(k≠0).若C与l有两个交点A、B,求线段AB的中点的轨
已知动直线l:y=kx+1 与圆C:x2+y2=r2 恒有两个不同的交点A,B
有一抛物线的方程为y2=2px,过点(P,0)的方向向量为(1,p)的直线L与抛物线的两个交点为A,B,O为坐标原点,若
设直线L过双曲线X2-Y2/3=1的一个焦点,交双曲线于A,B亮点,O为坐标原点,若OA向量乘以OB向量=0,求|AB|
直线kx-y+1=0与圆x^2+y^2=4相交于A,B两点,若点M在圆上且有向量OM=向量oa+向量ob(o为坐标原点)
直线l:y=kx+根号2与双曲线C:x^2/3-y^2=1交于不同的两点A.B,且向量OA.向量OB<6,求k值范围
已知双曲线x2-y2=2的右焦点为F,过点F的动直线与双曲线相交于A,B,点C的坐标是(1,0).证明向量CA*向量C
设双曲线x^2/a^2-y^2=1(a>0),与直线l:x+y=1相交于不同的点A、B,直线l交y轴于P,且有(向量PA
双曲线x2-2y2=2与和向量n=(1,2)平行的直线相交于A,B两点,且OA垂直于OB(O为坐标原点),求直线方程
已知经过点P(0,2)且以向量d=(1,a)为一个方向向量的直线l与双曲线3x^2-y^2=1相交于不同两点A、B
已知直线m:y=kx+b与椭圆X的平方/2+y2=1相交于A,B两点,O为原点.若OA向量丄OB向量,求直线m与以原点为
已知圆(x-2)2+y2=9和直线y=kx交于A,B两点,O是坐标原点,若向量OA+向量OB=0向量,则向量AB的模=?