作业帮 > 数学 > 作业

1、已知3cos^2 x+2sin2x=-1 (1)求tanx的值 (2)3cos2x+4sin2x的值

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/20 02:06:54
1、已知3cos^2 x+2sin2x=-1 (1)求tanx的值 (2)3cos2x+4sin2x的值
2、已知sinx*cosx=1/5,且TT/4小于x小于TT/2,则cosx-sinx=?
1、已知3cos^2 x+2sin2x=-1 (1)求tanx的值 (2)3cos2x+4sin2x的值
(1)
换成3cos^2 x+2sin2x+1=0 因为1=sin^2 x+cos^2 x,sin2x=2sinx cosx代入
得,4cos^2 x+4sinx cosx+sin^2 x=0 得(2cosx+sinx)^2=0
则2cosx+sinx=0 sinx=-2cosx所以tanx=sinx/cosx=-2
并且由于sin^2 x+cos^2 x=1 得到cos^2 x=1/5
3cos2x+4sin2x=3*(2cos^2 x-1)+8sinx cosx=6cos^2 x-3-16cos^2 x=-10*1/5 -3=-5
(2)
(cosx-sinx)^2=sin^2 x+cos^2 x-2*sinx*cosx=1-2*1/5=3/5 则cosx-sinx=正负根号(3/5)
因为TT/4小于x小于TT/2,此时cosx
再问: 3*(2cos^2 x-1)+8sinx cosx=6cos^2 x-3-16cos^2 x这一步如何换算? 是将8sinx cosx换成-16cos^2 x吗?怎样变换呢?
再答: 你说的对 就是将sinx=-2cosx 代入后得到的