A,B是椭圆x^2/a^2+y^2/b^2=1上两点,且OA垂直OB,求证1/OA^2+1/OB^2为定值
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 18:23:46
A,B是椭圆x^2/a^2+y^2/b^2=1上两点,且OA垂直OB,求证1/OA^2+1/OB^2为定值
设A(tcosθ,tsinθ).因为OA垂直于OB,故B(rcos(90度+θ),rsin(90度+θ)).其中OA=t,OB=r,OA与x轴正向所成的角为θ,因为A、B两点都在椭圆上,所以这两点的坐标满足椭圆方程.
将坐标代入并化简得:
1/OA^2+1/OB^2=1/t^2+(1/r^2)=(b^2+a^2)/(a^2*b^2)=(定值)
其实这既可以说是圆的参数“表达式”,又可以说是初中阶段所学过的“图形与坐标”,但不是“椭圆的参数方程”,倒有一点类似于“直线方程的参数式”.但这样做是没有任何问题的,而且过程特别简捷.这样说,你能理解吗?
将坐标代入并化简得:
1/OA^2+1/OB^2=1/t^2+(1/r^2)=(b^2+a^2)/(a^2*b^2)=(定值)
其实这既可以说是圆的参数“表达式”,又可以说是初中阶段所学过的“图形与坐标”,但不是“椭圆的参数方程”,倒有一点类似于“直线方程的参数式”.但这样做是没有任何问题的,而且过程特别简捷.这样说,你能理解吗?
椭圆X^2/a^2+y^2/b^2=1(a>b>0)上有两点A、B满足OA垂直于OB(O为坐标原点),求证:O到直线AB
已知抛物线y^2=-x与直线y=k(x+1)相交于A、B两点,O为坐标原点,求证OA垂直OB
设A、B是椭圆x^2/4+y^2=1上的两点,O为坐标原点 若直线AB在y轴上的截距为4,且OA,OB斜率之和等于2
A.B是抛物线Y平方=4x上的2点,且满足OA垂直OB(O为原点),求证:直线AB经过一个定点
A.B是抛物线Y^2=2PX(P>0)上的两点,且OA垂直OB,求证直线AB过定点.
设椭圆中心在坐标原点,焦点在X轴上,离心率为E=2分之根号2,它与直线Y=-X-1相交于A,B 两点,OA垂直于OB,
A,B是抛物线y^2=2px(p>0)上的两点,满足OA垂直OB(O为原点),求证直线AB恒过一定点
抛物线y=2x^2上两点A、B.O为原点,且OA垂直OB,求三角形OAB面积的最小值.
A,B是椭圆x^2+y^2/2=1上的点,O为原点,OA与OB斜率的乘积等于-2,向量OC=向量OA+向量OB.
已知A,B是抛物线y^2=4x上的两点,O为坐标原点,OA垂直OB,求证A,B两点的纵坐标之积为常数.
直线l:y=kx+1与椭圆C:2X^2+Y^2=2交于A、B两点,以OA,OB为邻边作平行四边形OAPB
直线l:y=kx+1与椭圆C:x²+y²/2=1交于A,B两点,以OA,OB为邻边做平行四边形OAP