作业帮 > 数学 > 作业

二次函数y=ax^2+bx+c与x轴的两个交点什么时候与顶点构成等腰直角三角形?

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/17 15:04:36
二次函数y=ax^2+bx+c与x轴的两个交点什么时候与顶点构成等腰直角三角形?
是等腰直角三角形
二次函数y=ax^2+bx+c与x轴的两个交点什么时候与顶点构成等腰直角三角形?
^2=4+4ac时,
如图:对于a(x^2)+bx+c=0,应该满足:(b^2)-4ac>0,即b^2>4ac.
设二次函数y=a(x^2)+bx+c与x轴的两个交点A、B的横坐标分别额为:x1,x2.则:
x1+x2=-b/a,x1x2=c/a,由这两个等式得:|x1-x2|={√[(b^2)-4ac]}/|a|
若使三角形ABC是等腰直角三角形,应满足:
|x1-x2|/2=[4ac-(b^2)]/4a,即:{√[(b^2)-4ac]}/2|a|=[4ac-(b^2)]/4a
化简得:√[(b^2)-4ac]=[(b^2)-4ac]/2
即:(b^2)-4ac=4或(b^2)-4ac=0(不合题意舍去)
所以:b^2=4+4ac
就是说,当等式b^2=4+4ac成立时,二次函数y=ax^2+bx+c与x轴的两个交点与顶点构成等腰直角三角形