(2010•吴江市模拟)如图,在Rt△ABC中,∠ACB=90°,AC<BC,D为AB的中点,DE交AC于点E,DF交B
来源:学生作业帮 编辑:神马作文网作业帮 分类:综合作业 时间:2024/11/18 23:54:57
(2010•吴江市模拟)如图,在Rt△ABC中,∠ACB=90°,AC<BC,D为AB的中点,DE交AC于点E,DF交BC于点F,且DE⊥DF,过A作AG∥BC交FD的延长线于点G.
(1)求证:AG=BF;
(2)若AE=9,BF=18,求线段EF的长.
(1)求证:AG=BF;
(2)若AE=9,BF=18,求线段EF的长.
(1)证明:∵D是AB的中点,
∴AD=BD.
∵AG∥BC,
∴∠GAD=∠FBD.
∵∠ADG=∠BDF,(3分)
∴△ADG≌△BDF.(4分)
∴AG=BF.
(2)连接EG,
∵△ADG≌△BDF,
∴GD=FD.
∵DE⊥DF,
∴EG=EF.(6分)
∵AG∥BC,∠ACB=90°,
∴∠EAG=90°.(7分)
在Rt△EAG中,
∵EG2=AE2+AG2=AE2+BF2
∴EF2=AE2+BF2且AE=9,BF=18.(9分)
∴EF=9
5.(10分)
∴AD=BD.
∵AG∥BC,
∴∠GAD=∠FBD.
∵∠ADG=∠BDF,(3分)
∴△ADG≌△BDF.(4分)
∴AG=BF.
(2)连接EG,
∵△ADG≌△BDF,
∴GD=FD.
∵DE⊥DF,
∴EG=EF.(6分)
∵AG∥BC,∠ACB=90°,
∴∠EAG=90°.(7分)
在Rt△EAG中,
∵EG2=AE2+AG2=AE2+BF2
∴EF2=AE2+BF2且AE=9,BF=18.(9分)
∴EF=9
5.(10分)
如图RT△ABC中,∠ACB=90°,D为AB中点DE,DF分别交AC于E,交BC于F,且DE⊥DF,CA<CB.
如图,在Rt△ABC中,∠ACB=90°,∠BAC的平分线AD交BC于点D,DE‖AC,DE交AB于点E,M为BE的中点
如图,在等腰RT△ABC中,∠ACB=90°,D为BC的中点,DE⊥AB,垂足为E,过点B作BF//AC交DE的延长线于
如图,Rt△ABC中,∠ACB=90°,D为AB中点,DE、DF分别交AC于E,交BC于F,且DE⊥DF.
如图 在等腰RT△ABC中∠ACB=90 D为BC的中点DE垂直AB 垂足为点E 过点B作BF平行AC交DE的延长线于点
已知:如图,Rt三角形ABC 中,角ACB=90度,D为AB中点,DE,DF分别交AC于E,交BC
如图,在等腰Rt△ABC中,∠ACB=90°,D为BC的中点,DE⊥AB,垂足为E,过点B做BF‖AC交DE的延长线与点
如图,在等腰Rt△ABC中,∠ACB=90°,D为的BD中点,DE⊥AB,垂足为E,过点B作BF平行AC交DE的延长线于
如图,在RT△ABC中,∠ACB=90°,CD平分∠ACB,且交斜边AB于点D,DE⊥BC于E,DF⊥AC于F
已知:如图,在Rt△ABC中,∠C=90°,线段BC的垂直平分线上DE交AB于点D,交BC于点E,DF垂直AC,垂足为F
已知如图,在Rt△ABC中,∠ACB=90°,AC=BC,D为BC的中点,CE⊥AD于E,交AB于F,连接DF,求证:∠
Rt△ABC中,∠ACB=90°,D为AB中点,DE、DF分别交AC于E,交BC于F,且DE⊥DF.如果CA=CB,求证