若存在过点(1,0)的直线与曲线y=x³和y=ax²+15/4x-9都相切,求实数a的取值范围
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 11:46:24
若存在过点(1,0)的直线与曲线y=x³和y=ax²+15/4x-9都相切,求实数a的取值范围
y=x^3的导数为y=3x^2,直线与其切点为(m,m^3)
则直线过(m,m^3),(1,0)
求得直线为y=0或者y=27/4*(x-1)
若y=0.则y=ax^2+15/4x-9顶点在x轴
得a=-25/64
若y=27/4*(x-1),斜率为27/4
y=ax^2+15/4x-9的导数为y=2ax+15/4,
直线与其切点为(n,an^2+15/4n-9)
2an+15/4=27/4
n=3/(2a)
直线过(3/2,27/8),(1,0) (3/(2a),(63-72a)/8a)
推出a=-1
所以a=-25/64或者a=-1
则直线过(m,m^3),(1,0)
求得直线为y=0或者y=27/4*(x-1)
若y=0.则y=ax^2+15/4x-9顶点在x轴
得a=-25/64
若y=27/4*(x-1),斜率为27/4
y=ax^2+15/4x-9的导数为y=2ax+15/4,
直线与其切点为(n,an^2+15/4n-9)
2an+15/4=27/4
n=3/(2a)
直线过(3/2,27/8),(1,0) (3/(2a),(63-72a)/8a)
推出a=-1
所以a=-25/64或者a=-1
若存在过点(1,0)的直线与曲线y=x^3和y=ax^2+15/4-9相切,求a怎么算啊
若存在过点(1,0)的直线与曲线y=x^2和y=ax^2+15/4-9相切,求a怎么算啊
若存在过点(1,0)的直线与曲线y=x的三次方和y=ax的平方+15/4(x)-9都相切,求a的值(2009江西(文))
若存在过点(1,0)的直线与曲线y=x³和y=ax²+15x/4-9都相切,求a的值
若存在过点(1,0)的直线与曲线y=x^3和y=ax^2+15x/4-9都相切,求a的值
一个数学导数题若存在过点(1,0)的直线与曲线y=x^3和y=ax^2+15/4x-9相切,求a?若y=0.则y=ax^
已知对任意实数m,直线x+y+m=0都不与曲线f(x)=x^3-3ax相切,求实数a的取值范围
若直线l:y=(a+1)x-1与曲线:y2=ax恰好有一个公共点,试求实数a的取值范围.
若存在过点(1,0)的直线与曲线y=x^3和y=ax^2+15/4x-9相切,求a怎么算啊
高中数学,若存在过点(1,0)的直线与曲线y=x^3和y=ax^2+15/4x-9相切,求a怎么算啊.具体一点谢谢了
存在过点(1,0)的直线与曲线y=x^3和y=ax^+(15/4)x-9都相切.那么切线的斜率怎么算
若过点(2,0)的直线与曲线y=x³和y=ax²+7x-4都相切,则a的值为答案2求详解