如图,抛物线与x轴交于A,B两点,与y轴交于C点,且经过点(2,-3a)
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/14 08:22:04
如图,抛物线与x轴交于A,B两点,与y轴交于C点,且经过点(2,-3a)
如图,抛物线y=ax^2+bx-3与x轴交于A、B两点,与y轴交于C点,且经过点(2,-3a),对称轴是直线x=1,顶点是M.
(1)求抛物线对应的函数关系式.
(2)经过C,M两点作直线,与x轴交于点N,在抛物线上是否存在这样的点P,使以点P,A,C,N为顶点的四边形为平行四边形?若存在,请求出点P的坐标;若不存在,请说明理由.
(3)设直线y=-x+3与y轴的交点是D,在线段BD上任取一点E(不与B,D重合),经过A,B,E三点的圆交直线BC于点F,试判断△AEF的形状,并说明理由.
如图,抛物线y=ax^2+bx-3与x轴交于A、B两点,与y轴交于C点,且经过点(2,-3a),对称轴是直线x=1,顶点是M.
(1)求抛物线对应的函数关系式.
(2)经过C,M两点作直线,与x轴交于点N,在抛物线上是否存在这样的点P,使以点P,A,C,N为顶点的四边形为平行四边形?若存在,请求出点P的坐标;若不存在,请说明理由.
(3)设直线y=-x+3与y轴的交点是D,在线段BD上任取一点E(不与B,D重合),经过A,B,E三点的圆交直线BC于点F,试判断△AEF的形状,并说明理由.
(1)对称轴是直线x=1,
-b/2a=1
经过点(2,-3a)
4a+2b-3=-3a
解得:a=1,b=-2
y=x^2-2x-3
(2)当y=0时,x^2-2x-3=0
(x+1)(x-3)=0
x1=-1,x2=3
A(-1,0),B(3,0)
当x=0时,y=-3
C(0,-3)
当x=1时,y=-4
M(1,-4)
直线CM:y=kx+h
-3=h
-4=k+h
k=-1,h=-3
直线CM:y=-x-3
当y=0时,x=-3
N(-3,0)
若在抛物线上是否存在这样的点P,使以点P,A,C,N为顶点的四边形为平行四边形
则PC//AN,点P的纵坐标是-3
-3=x^2-2x-3
x(x-2)=0
x1=0,x2=2
则P(2,-3)
直线CN的斜率是(-3-0)/[0-(-3)]=-1
直线PA的斜率是(-3-0)/[2-(-1)]=-1
PA//CN
四边形PANC是平行四边形
存在这样的点P,点P的坐标是(2,-3)
(3)y=-x+3
令x=0
则y=3
D(0,3)
∠CBD是直角,EF过圆心G,EF是圆的直径
所以∠EAF也是直角,△AEF是直角三角形
-b/2a=1
经过点(2,-3a)
4a+2b-3=-3a
解得:a=1,b=-2
y=x^2-2x-3
(2)当y=0时,x^2-2x-3=0
(x+1)(x-3)=0
x1=-1,x2=3
A(-1,0),B(3,0)
当x=0时,y=-3
C(0,-3)
当x=1时,y=-4
M(1,-4)
直线CM:y=kx+h
-3=h
-4=k+h
k=-1,h=-3
直线CM:y=-x-3
当y=0时,x=-3
N(-3,0)
若在抛物线上是否存在这样的点P,使以点P,A,C,N为顶点的四边形为平行四边形
则PC//AN,点P的纵坐标是-3
-3=x^2-2x-3
x(x-2)=0
x1=0,x2=2
则P(2,-3)
直线CN的斜率是(-3-0)/[0-(-3)]=-1
直线PA的斜率是(-3-0)/[2-(-1)]=-1
PA//CN
四边形PANC是平行四边形
存在这样的点P,点P的坐标是(2,-3)
(3)y=-x+3
令x=0
则y=3
D(0,3)
∠CBD是直角,EF过圆心G,EF是圆的直径
所以∠EAF也是直角,△AEF是直角三角形
如图,已知抛物线y=ax2+bx-3与x轴交于A、B两点,与y轴交于C点,且经过点(2,-3a),对称轴是直线X=1,
如图,抛物线y=ax²+bx-3与x轴交于A,B两点,与y轴交于点C,且经过点(2,-3a),对称轴是直线x=
如图,已知抛物线的顶点坐标为M(1,4),且经过点N(2,3),与x轴交于A、B两点(点A在点B左侧),与y轴交于点C.
如图 抛物线y=-x2+2x+3与x轴交于A,B 两点,与 y轴交于点C,对称轴与抛物线交于点P,与直线BC 交于点M,
如图,抛物线y=ax^2+bx-3与x轴交于A、B两点,与y轴交于C点,且经过点(2,-3a),对称轴
如图,二次函数y=x²+bx+c的图像与x轴交于A,B两点,且A点坐标(-3,0),经过B点的直线交抛物线与点
如图,抛物线y=二分之一x2+bx-2与x轴交于A、B两点,与y轴交于C点,且A(-1.0).
如图,抛物线y=x²-2x-k与x轴交于A、B两点,与y轴交于点C(0,-3)
如图,抛物线的顶点坐标M(1,4).且过点N(2,3),于X轴交于A,B两点(点A在点B左侧).与Y轴交于点C.
数学题,如图,抛物线y=(x+1)2+k与y轴交于A,B两点,与y轴交于点C(0,-3)
如图,抛物线y=ax2+bx+c经过点M(-1,2)、N(1,-2),且与x交于A、B两点,与y轴交于点C.
如图,在平面直角坐标系中,直线y=-3x-3与x轴交于点A,与y轴交于点C.抛物线y=x2+bx+c经过A,C两点,且与