作业帮 > 数学 > 作业

在数列{a『n』}中,a『1』=1,a『1』+2a『2』+3a『3』+…+na『n』=(n+1)/2a『n+1』(n∈N

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/06 22:23:25
在数列{a『n』}中,a『1』=1,a『1』+2a『2』+3a『3』+…+na『n』=(n+1)/2a『n+1』(n∈N^*). ①求数列{a『n』}的通项a『n』; ②若存在n∈N^*,使得a『n』≤(n+1)λ成立,求实数λ的最小值. 注:“『』”内为“下脚标”.
在数列{a『n』}中,a『1』=1,a『1』+2a『2』+3a『3』+…+na『n』=(n+1)/2a『n+1』(n∈N
令b(n)=n*a(n) S(n)为b(n)的前n项和
则b(1)=a(1)=1
S(n)=b(n+1)/2
S(n)=(S(n+1)-S(n))/2
S(n+1)=3S(n)
S(n)=3^(n-1)
b(n)=S(n)-S(n-1)=2/3*3^(n-1)
所以a(n)=2*3^(n-1)/(3n) (n>1)
a(1)=1

第二问类似的,a(n)/(n+1)的最小值在n=2时取得,为1/3
所以实数λ的最小值为1/3

那位贴图的兄弟算错的原因在这里
a(2)=3*1/2*a(1) 这个式子是错的
因为a(1)+2a(2)+3a(3)+.+na(n)=(n+1)/2*a(n+1)
当n=1时
a(1)=(1+1)/2*a(2) 有a(1)=a(2)=1
他在推导时忽略了这一特殊情形.