设f(x1...xn)为n元实二次型,若对任意非0x都有f不等0,证f要么正定,要么负定
设A为n阶正定矩阵,x=(x1,x2,x3,.xn)T,证明:f(x)=| A x |为负定矩阵.| xT 0 |
已知函数f(x)=alnx+1/2x^2 (a>0)若对任意两个不等的正实数x1,x2 都有[f(x1)-f(x2)]/
刘老师帮我证明一下刘老师您好 帮我证明一下必要性 n元二次型f(x1,x2,...,xn)=x^TAx正定(实对称矩阵A
设A=(aij)n*n为实矩阵,n元二次型f(x1,x2,...,xn)=(ai1x1+ai2x2+...+ainxn)
设函数f(x)的定义域为R,若f(π/2)=0,f(π)=-1,且对任意的X1X2有f(X1)+f(X2)=2f(X1+
函数f(x)定义在区间【0,1】上,为非负函数,f(1)=1,且对任意属于【0,1】区间的x1,x2,x1+x2,均有f
已知f(x)对任意实数x1 x2都有f(x1+x2)+f(x1-x2)=2f(x1)·f(x2) 求证f(x)为偶函数
函数f(x)的定义域为D,若对任意x1,x2∈D,当x1<x2时,都有f(x1)≤f(x2),则称函数f(x)在D上为非
已知二次函数f(x)对任意x∈R,都有f(1-x)=f(1+x)成立.设f(x)二次项系数为m(m≠0),当x∈[0,Π
设函数F(X)的定义域为R,对任意实数X1,X2,有F(X1)+F(X2)=2F(X1+X2/2)乘以F(X1-X2)/
设函数f(x)的定义域为R,对任意实数x1,x2,有f(x1)+f(x2)=2f{(x1+x2)/2}×f{(x1-x2
设函数f(x)的定义域为R,对任意实数x1,x2,总有f(x1+x2)=f(x1)+f(x2),当x>0时,f(x)>0