设f(x,y)在闭区间D:x^2/a^2+y^2/b^20,b->0)1/(πab)*二重积分D:f(x,y)=f(0,
设函数f(x)在区间(a,b)内恒满足,|f(x)-f(y)|
2 设函数F(X)=a㏑x/x+1+b/x,曲线y= f(x)
已知奇函数f(x)在区间[-b,-a] (b>a>0)上是减函数,且f(x)>0,试问函数y=|f(x)|在区间[a,b
设函数f(x)=x^3-3ax+b(a不等于0)(1)若曲线y=f(x)在点(2,f(x))处与直线y=8相切,求a,b
设偶函数f(x)在区间[a,b]上是增函数(a>0),判断F(x)=(1/2)^f(x)-x 在区间[-b,-a]上的单
已知定义在R上的偶函数y=f(x+1)=-f(x),且在区间[-1,0]上单调递增,设a=f(√2),b=f(2),c=
设f(x)=(a^x+a^y) (a>0),证明f(x+y)+f(x-y)=2f(x)f(y)
设闭区域D:{(x,y)|x^2+y^2=0},f(x,y)为D上连续函数,且f(x,y)=(1-x^2-y^2)^1/
高数零点定理设函数f(x)d对于闭区间[a,b]上任意两点x、y,恒有|f(x)-f(y)|≤L|x-y|,其中L为正常
高数 重积分,设f(x,y)在闭区域D=|(x,y)|x^2+y^2=0|上连续,且f(x,y)=【根号下(1-x^2+
已知函数y=f(x)是偶函数,y=f(x-2)在[0,2]上单调递减,设a=f(0),b=f(2),c=f(-1),则(
奇函数y=f(x)的定义域为R,当x≥0时,f(x)=2x-x2,设函数y=f(x),x∈[a,b]的值域为[1b,1a