作业帮 > 数学 > 作业

正三棱锥1

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 16:41:32
正三棱锥1
解题思路: 求点A到平面PCD的距离
解题过程:
请参考 如图,在四棱锥P—ABCD中,侧面PAD⊥底面ABCD,侧棱PA=PD=,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O为AD中点. (Ⅰ)求证:PO⊥平面ABCD; (Ⅱ)求异面直线PB与CD所成角的余弦值; (Ⅲ)求点A到平面PCD的距离. 本小题主要考查直线与平面的位置关系、异面直线所成角、点到平面的距离等基本知识,考查空间想象能力,逻辑思维能力和运算能力.满分12分. 解法一: (Ⅰ)证明:在△PAD卡中PA=PD,O为AD中点,所以PO⊥AD. 又侧面PAD⊥底面ABCD,平面PAD∩平面ABCD=AD,PO平面PAD, 所以PO⊥平面ABCD. (Ⅱ)连结BO,在直角梯形ABCD中,BC∥AD,AD=2AB=2BC, 有OD∥BC且OD=BC,所以四边形OBCD是平行四边形, 所以OB∥DC. 由(Ⅰ)知PO⊥OB,∠PBO为锐角, 所以∠PBO是异面直线PB与CD所成的角. 因为AD=2AB=2BC=2,在Rt△AOB中,AB=1,AO=1,所以OB=, 在Rt△POA中,因为AP=,AO=1,所以OP=1, 在Rt△PBO中,PB=, cos∠PBO=, 所以异面直线PB与CD所成的角的余弦值为. (Ⅲ)由(Ⅱ)得CD=OB=, 在Rt△POC中,PC=所以PC=CD=DP,S△PCD=·2=. 又S△= 设点A到平面PCD的距离h, 由VP-ACD=VA-PCD, 得SACD·OP=SPCD·h, 即×1×1=××h, 解得h=.
最终答案:略