线性代数问题,这里说有三个线性无关的解那么就是说明它的秩为3阿,基础解系解向量数量是n-r那么就应该等于1,只要一个未知
线性代数问题已知列向量组的秩为r,请问如何证明:列向量组中的任意r个线性无关的向量均构成它的一个极大线性无关组?(好像是
秩r=极大线性无关组中向量的个数,基础解系本身又是一个极大线性无关组,但其所含向量个数为n-r,那极大…
大学数学题几道齐次线性方程组Ax=0,A是m*n矩阵,秩是n-3,abc是三个线性无关解向量,那么基础解系是?草,abc
线性代数问题设A=(aij)n*n的秩为r,则在A的n个行向量中(A)A.必有r个线性无关。为什么?设A是n阶非零方阵,
B是由n个n维线性无关的向量构成的向量组,A是n阶矩阵,那么r (AB) 一定等于 r(A)吗
关于线性代数的小问题若n阶矩阵A有n个线性无关的特征向量,那么A的秩是n吗
线性代数的问题设m*n矩阵A的秩r(a)=n-3(n>3),α,Β,Γ 是齐次线形方程组A*x=0的三个线性无关的解向量
线性代数的一个小问题A为4阶矩阵,r(A)=3 所以方程组AX=0的基础解系含有 一个线性无关解向量.这句话怎么理解啊?
线性代数秩的问题向量组A,B均线性无关,满足A=BK,k为一矩阵,r(A)=r,那么r(K)=r,该命题对吗?为什么?应
线性代数已知列向量组的秩为r,请问如何证明:列向量组中的任意r个线性无关的向量均构成它的一个极大线性无关组?(好像是用极
线性代数问题证明向量组a1,a2.as的任意r个线性无关的向量都是该向量组的一个极大无关组,其中r为该向量组的秩
线性代数问题 r(A)=n-1,Ax=0的基础解系所包含的个数为1,基础解系中的各个元素都是线性无关的,为什么r(x)≤