用数学归纳法证明:(n+1)(n+2)(n+3)+.+(n+n)=(2^n)*1*3*.(2n-1),从K到K+1,左端
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 20:21:04
用数学归纳法证明:(n+1)(n+2)(n+3)+.+(n+n)=(2^n)*1*3*.(2n-1),从K到K+1,左端需乘的代数式是 答案2(2k+1),
同志们,请认真读题……拜托了
同志们,请认真读题……拜托了
证明:
n=1时,n+1=2
(2^1)*1=2,等式成立.
假设当n=k(k为自然数,且k>=1)时等式成立.
即
(k+1)(k+2)...(k+k)=(2^k)*1*3*...*(2k-1)
则当n=k+1时,
(k+1+1)(k+1+2)...(k+1+k-1)(k+1+k)(k+1+k+1)
=(k+2)(k+3)...(k+k)(2k+1)(2k+2)
=(k+1)(k+2)...(k+k)(2k+1)(2k+2)/(k+1)
=(k+1)(k+2)...(k+k)(2k+1)2
=(2^k)*1*3*...*(2k-1)*(2k+1)*2
=[2^(k+1)]*1*3*...*[2(k+1)-1]
等式也成立.
综上,(n+1)(n+2)(n+3)+.+(n+n)=(2^n)*1*3*.(2n-1)
等式成立.
n=1时,n+1=2
(2^1)*1=2,等式成立.
假设当n=k(k为自然数,且k>=1)时等式成立.
即
(k+1)(k+2)...(k+k)=(2^k)*1*3*...*(2k-1)
则当n=k+1时,
(k+1+1)(k+1+2)...(k+1+k-1)(k+1+k)(k+1+k+1)
=(k+2)(k+3)...(k+k)(2k+1)(2k+2)
=(k+1)(k+2)...(k+k)(2k+1)(2k+2)/(k+1)
=(k+1)(k+2)...(k+k)(2k+1)2
=(2^k)*1*3*...*(2k-1)*(2k+1)*2
=[2^(k+1)]*1*3*...*[2(k+1)-1]
等式也成立.
综上,(n+1)(n+2)(n+3)+.+(n+n)=(2^n)*1*3*.(2n-1)
等式成立.
用数学归纳法证明“(n+1)(n+2)•…•(n+n)=2n•1•3•…•(2n-1)”,当“n从k到k+1”左端需增乘
用数学归纳法证明“(n+1)(n+2).(n+n)=1*3*...*(2n-1)*2^n”时“从k到k+1”左边需要增乘
用数学归纳法证明“(n+1)(n+2)…(n+n)=2^n·1·3·5…(2n-1)(n∈N*)”时,从n=k到n=k+
用数学归纳法证明:(n+1)(n+2).(n+n)=(2^n)*1*2*.(2n-1)(n∈n*),从k到k+1,左端需
用数学归纳法证明(n+1)(n+2)…(n+n)=2n•1•3•…•(2n-1)(n∈N)时,从“k”到“k+1”的证明
用数学归纳法证明:n∈N*,(n+1)(n+2)…(n+n)=2n•1•3•(2n-1),从k到k+1时左边需增代数式等
利用数学归纳法证明“(n+1)(n+2)…(n+n)=2n×1×3×…×(2n-1),n∈N*”时,从“n=k”变到“n
用数学归纳法证明 (n+1)(n+2)…(n+n)=2^n·1·3·……·(2n-1)(n∈N*),从假定当n=k时公式
用数学归纳法证明1/2+2/2^2+3/3^2+……+n/2^n=2-(n+2)/2^n当n=k+1时左端在n+k时的左
用数学归纳法证明,1+2+3+……+n^2=(n^4+n^2)/2时,则n=k+1时的左端应在n=k时的左端加上 (要分
用数学归纳法证明(n+1)(n+2)……(n+n)=2^n*1*3……(2n-1),从k到k+1,等式左边需增加的代数式
用数学归纳法证明(2^n-1)/(2^n+1)>n/(n十1)(n≥3,n∈N+)