f(n))=1/n+1 +1/n+2 .+1/2n.如果对任意n≥2.n为正实数.不等式12f(n)+7logab>7l
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/19 15:40:28
f(n))=1/n+1 +1/n+2 .+1/2n.如果对任意n≥2.n为正实数.不等式12f(n)+7logab>7log(a+1)b+7恒成立.则实数b的取值范围
先证明f(n)为递增函数,证明如下
f(n+1)-f(n)=1/(2n+1)-1/(2n+2) 恒大于0;所以f(n)的最小值为f(2)=7/12
把最小值代入式子中,并化简则可得,只需要
logab>log(a+1)b 恒成立.
由于定义域可知 a>0 a1,b>0
显然b=1时不能使式子恒成立.所以得需要
1/logba>1/logb(a+1) 恒成立
化简得
logb a/(a+1) / logba * logb(a+1) >0 需恒成立
即 需要logb a/(a+1)* logba * logb(a+1)>0
显然a/(a+1)1的
则可以推出logb a/(a+1)和logb(a+1)始终是异号
则式子恒成立否只取决于logba的符号,所以 需要
logba1时 0
f(n+1)-f(n)=1/(2n+1)-1/(2n+2) 恒大于0;所以f(n)的最小值为f(2)=7/12
把最小值代入式子中,并化简则可得,只需要
logab>log(a+1)b 恒成立.
由于定义域可知 a>0 a1,b>0
显然b=1时不能使式子恒成立.所以得需要
1/logba>1/logb(a+1) 恒成立
化简得
logb a/(a+1) / logba * logb(a+1) >0 需恒成立
即 需要logb a/(a+1)* logba * logb(a+1)>0
显然a/(a+1)1的
则可以推出logb a/(a+1)和logb(a+1)始终是异号
则式子恒成立否只取决于logba的符号,所以 需要
logba1时 0
已知函数f(x)=(2^n-1)/(2^n+1),求证:对任意不小于3的自然数n,都有f(n)>n/(n+1)
证明不等式:(1/n)^n+(2/n)^n+(3/n)^n+.+(n/n)^n
如果f(n)=1/(n+1)+1/(n+2)+```1/2n (n属于N*) 那么f(n+1)-f(n)=
设f﹙x﹚=lg[1+2^x+…+(n‐1)^x+n^xa]/n 其中a是实数,n 是任意给定的正自然数且n≥2,如果f
证明对任意正整数n,不等式ln(1/n+1)>1/n^2-1/n^3
函数f(x)的定义域为R,若对一切实数m.n都有f(m-n)=f(m)+(n-2m-1)n成立.
1、若f(n)=[n²+1]-n,g(n)=n-[n²-1],h(n)=1/(2n),求f(n),g
当n为正偶数,求证n/(n-1)+n(n-2)/(n-1)(n-3)+...+n(n-2).2/(n-1)(n-3)..
已知递推公式f(n)=(n-1)(n-2)[f(n-2)+f(n-3)+(n-3)*f(n-4)] (n>4)求通项公式
用数学归纳法证明:f(n)=3*5^(2n+1)+2^(3n+1)对任意正整数n,f(n)都能被17整除
设f(x)=2^x/(2^x+根号2),求f(1/n)+f(2/n)+f(3/n)+.+f(n/n)(n为自然数)
现规定对正整数n的一种运算,其规则为:f(n)=3n+1(n为奇数)2n−1(n为偶数)